Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-psychotic drugs could help fight cancer

14.08.2009
The observation that people taking medication for schizophrenia have lower cancer rates than other people has prompted new research revealing that anti-psychotic drugs could help treat some major cancers.

A preliminary finding in the current online issue of the International Journal of Cancer reports that the anti-psychotic drug, pimozide, kills lung, breast and brain cancer cells in in-vitro laboratory experiments.

Several epidemiological studies have noted the low rate of cancer among schizophrenic patients. These studies found, for example, that these patients have lower rates of lung cancer than other people, even though they are more likely to smoke.

Genetic factors and the possibility of reduced cancer detection in patients have been considered and over the past decade anti-psychotic drugs have been suggested as possible mediators of this effect.

In the new study, pimozide was the most lethal of six anti-psychotic drugs tested by a team from UNSW and the University of Queensland. Rapidly-dividing cancer cells require cholesterol and lipids to grow and the researchers suspect that pimozide kills cancer cells by blocking the synthesis or movement of cholesterol and lipid in cancer cells.

Analysis of gene expression in test cancer cells showed that genes involved in the synthesis and uptake of cholesterol and lipids were boosted when pimozide was introduced.

To test the idea that pimozide acts by disrupting cholesterol homeostasis, the researchers combined pimozide with mevastatin, a drug that inhibits cholesterol production in cells. The two drugs were more lethal in combination against cancer cells than when either drug was used alone.

"The combination of pimozide and mevastatin increased cancer cell death," says UNSW researcher Dr Louise Lutze-Mann, a co-author of the study. "We needed a lower dose of each drug to kill the same amount of cells."

Although side-effects are associated with the use of high doses of these drugs – such as tremors, muscle spasms and slurred speech – these effects are considered to be tolerable in patients where other treatments have failed and the drugs will only be used short-term. These side-effects would be reduced if the drugs were used in combination with a lipid-lowering drug, such as mevastatin.

The researchers have also investigated the effects of olazapine , a "second-generation" antipsychotic drug, and found that it also kills cancer cells but has a better side-effect profile. When administered to patients, it accumulates in the lung, which suggests that it may prove to be most useful in treating lung cancer.

The researchers are now testing these drugs on tumour cells from brain cancers since these tumours are extremely difficult to treat and are frequently associated with poor patient prognosis. Patients diagnosed with glioblastoma, for example, survive less than one year.

The results are very promising as these drugs are greater than 50-fold more effective at killing glioblastoma cells than the chemotherapeutic drug currently in use. The researchers are also investigating the effects of these drugs on cells derived from drug-resistant childhood cancers where current chemotherapy has failed.

Another hopeful prospect is an investigation of another group of drugs, called SERMs, which are similar in structure to the antipsychotic drugs but have far fewer side-effects associated with them.

Dr. Louise Lutze-Mann | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>