Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-psychotic drugs could help fight cancer

14.08.2009
The observation that people taking medication for schizophrenia have lower cancer rates than other people has prompted new research revealing that anti-psychotic drugs could help treat some major cancers.

A preliminary finding in the current online issue of the International Journal of Cancer reports that the anti-psychotic drug, pimozide, kills lung, breast and brain cancer cells in in-vitro laboratory experiments.

Several epidemiological studies have noted the low rate of cancer among schizophrenic patients. These studies found, for example, that these patients have lower rates of lung cancer than other people, even though they are more likely to smoke.

Genetic factors and the possibility of reduced cancer detection in patients have been considered and over the past decade anti-psychotic drugs have been suggested as possible mediators of this effect.

In the new study, pimozide was the most lethal of six anti-psychotic drugs tested by a team from UNSW and the University of Queensland. Rapidly-dividing cancer cells require cholesterol and lipids to grow and the researchers suspect that pimozide kills cancer cells by blocking the synthesis or movement of cholesterol and lipid in cancer cells.

Analysis of gene expression in test cancer cells showed that genes involved in the synthesis and uptake of cholesterol and lipids were boosted when pimozide was introduced.

To test the idea that pimozide acts by disrupting cholesterol homeostasis, the researchers combined pimozide with mevastatin, a drug that inhibits cholesterol production in cells. The two drugs were more lethal in combination against cancer cells than when either drug was used alone.

"The combination of pimozide and mevastatin increased cancer cell death," says UNSW researcher Dr Louise Lutze-Mann, a co-author of the study. "We needed a lower dose of each drug to kill the same amount of cells."

Although side-effects are associated with the use of high doses of these drugs – such as tremors, muscle spasms and slurred speech – these effects are considered to be tolerable in patients where other treatments have failed and the drugs will only be used short-term. These side-effects would be reduced if the drugs were used in combination with a lipid-lowering drug, such as mevastatin.

The researchers have also investigated the effects of olazapine , a "second-generation" antipsychotic drug, and found that it also kills cancer cells but has a better side-effect profile. When administered to patients, it accumulates in the lung, which suggests that it may prove to be most useful in treating lung cancer.

The researchers are now testing these drugs on tumour cells from brain cancers since these tumours are extremely difficult to treat and are frequently associated with poor patient prognosis. Patients diagnosed with glioblastoma, for example, survive less than one year.

The results are very promising as these drugs are greater than 50-fold more effective at killing glioblastoma cells than the chemotherapeutic drug currently in use. The researchers are also investigating the effects of these drugs on cells derived from drug-resistant childhood cancers where current chemotherapy has failed.

Another hopeful prospect is an investigation of another group of drugs, called SERMs, which are similar in structure to the antipsychotic drugs but have far fewer side-effects associated with them.

Dr. Louise Lutze-Mann | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>