Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-psychotic drugs could help fight cancer

14.08.2009
The observation that people taking medication for schizophrenia have lower cancer rates than other people has prompted new research revealing that anti-psychotic drugs could help treat some major cancers.

A preliminary finding in the current online issue of the International Journal of Cancer reports that the anti-psychotic drug, pimozide, kills lung, breast and brain cancer cells in in-vitro laboratory experiments.

Several epidemiological studies have noted the low rate of cancer among schizophrenic patients. These studies found, for example, that these patients have lower rates of lung cancer than other people, even though they are more likely to smoke.

Genetic factors and the possibility of reduced cancer detection in patients have been considered and over the past decade anti-psychotic drugs have been suggested as possible mediators of this effect.

In the new study, pimozide was the most lethal of six anti-psychotic drugs tested by a team from UNSW and the University of Queensland. Rapidly-dividing cancer cells require cholesterol and lipids to grow and the researchers suspect that pimozide kills cancer cells by blocking the synthesis or movement of cholesterol and lipid in cancer cells.

Analysis of gene expression in test cancer cells showed that genes involved in the synthesis and uptake of cholesterol and lipids were boosted when pimozide was introduced.

To test the idea that pimozide acts by disrupting cholesterol homeostasis, the researchers combined pimozide with mevastatin, a drug that inhibits cholesterol production in cells. The two drugs were more lethal in combination against cancer cells than when either drug was used alone.

"The combination of pimozide and mevastatin increased cancer cell death," says UNSW researcher Dr Louise Lutze-Mann, a co-author of the study. "We needed a lower dose of each drug to kill the same amount of cells."

Although side-effects are associated with the use of high doses of these drugs – such as tremors, muscle spasms and slurred speech – these effects are considered to be tolerable in patients where other treatments have failed and the drugs will only be used short-term. These side-effects would be reduced if the drugs were used in combination with a lipid-lowering drug, such as mevastatin.

The researchers have also investigated the effects of olazapine , a "second-generation" antipsychotic drug, and found that it also kills cancer cells but has a better side-effect profile. When administered to patients, it accumulates in the lung, which suggests that it may prove to be most useful in treating lung cancer.

The researchers are now testing these drugs on tumour cells from brain cancers since these tumours are extremely difficult to treat and are frequently associated with poor patient prognosis. Patients diagnosed with glioblastoma, for example, survive less than one year.

The results are very promising as these drugs are greater than 50-fold more effective at killing glioblastoma cells than the chemotherapeutic drug currently in use. The researchers are also investigating the effects of these drugs on cells derived from drug-resistant childhood cancers where current chemotherapy has failed.

Another hopeful prospect is an investigation of another group of drugs, called SERMs, which are similar in structure to the antipsychotic drugs but have far fewer side-effects associated with them.

Dr. Louise Lutze-Mann | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>