Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel anti-malarial drug target identified

20.07.2012
An international team of scientists, led by researchers from the Department of Pediatrics at the University of California, San Diego School of Medicine, have identified the first reported inhibitors of a key enzyme involved in survival of the parasite responsible for malaria. Their findings, which may provide the basis for anti-malarial drug development, are currently published in the online version of the Journal of Medicinal Chemistry.

Tropical malaria is responsible for more than 1.2 million deaths annually. Severe forms of the disease are mainly caused by the parasite Plasmodium falciparum, transmitted to humans by female Anopheles mosquitoes. Malaria eradication has not been possible due to the lack of vaccines and the parasite's ability to develop resistance to most drugs.


This is an illustration of Anopheles darlingi.
Credit: UC San Diego School of Medicine

The researchers conducted high-throughput screening of nearly 350,000 compounds in the National Institutes of Health's Molecular Libraries Small Molecule Repository (MLSMR) to identify compounds that inhibit an enzyme which plays an important role in parasite development: Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD) is essential for proliferating and propagating P. falciparum.

"The enzyme G6PD catalyzes an initial step in a process that protects the malaria parasite from oxidative stress in red blood cells, creating an environment in which the parasite survives," said senior author Lars Bode, PhD, assistant professor in the UCSD Department of Pediatrics, Division of Neonatology and the Division of Gastroenterology, Hepatology and Nutrition. People with a natural deficiency in this enzyme are protected from malaria and its deadly symptoms, an observation that triggered the reported research.

The parasitic form of the enzyme (PfG6PD) is what contributes the majority of G6PD activity in infected red blood cells. Because the parasite lives in the blood of a malaria-infected person, the scientists aimed at identifying compounds that inhibit the parasitic form but not the human form of the enzyme. "We didn't want to interfere with the human form of the enzyme and risk potential side effects," Bode explained.

Scientific testing had previously been limited by a lack of recombinant PfG6PD. Team members in the lab of Katja Becker, PhD, at the Interdisciplinary Research Center at Justus-Liebig-University in Giessen, Germany produced the first complete and functional recombinant PfG6PD, and researchers led by Anthony Pinkerton, PhD, at Sanford-Burnham Medical Research Institute used it to identify the lead compound resulting from their efforts, ML276.

ML276 represents the first reported selective PfG6PD inhibitor, which stops the growth of malaria parasites in cultured red blood cells – even those parasites that developed resistance to currently available drugs. "ML276 is a very promising basis for future drug design of new anti-malarial therapeutics," said Bode.

Contributors to the study include Janina Preuss, UC San Diego, Justus-Liebig-University and Sanford-Burnham Medical Research Institute; Esther Jortzik, Stefan Rahlfs and Katja Becker, Justus-Liebig-University; Patrick Maloney, Satyamaheshwar Peddibhotla, Paul Hershberger, Eliot Sugarman, Becky Hood, Eigo Suyama, Kevin Nguyen, Stefan Vasile, Arianna Mangravita-Novo, Michael Vicchiarelli, Danielle McAnally, Layton H. Smith. Gregory P. Roth, Michael P. Hedrick, Palak Gosalia, Monika Milewski, Yujie Linda Li, Eduard Sergienko, Jena Diwan, Thomas D.Y. Chung, and Anthony B. Pinkerton, Sanford-Burnham.

The study was supported by the National Institutes of Health (1R21AI082434), the Deutsche Forschungsgemeinschaft, and an NIH Molecular Libraries grant (U54 HG005033) to the Conrad Prebys Center for Chemical Genomics at Sanford Burnham Medical Research Institute, one of the comprehensive centers of the NIH Molecular Libraries Probe Production Centers Network (MLPCN).

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>