Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel anti-malarial drug target identified

20.07.2012
An international team of scientists, led by researchers from the Department of Pediatrics at the University of California, San Diego School of Medicine, have identified the first reported inhibitors of a key enzyme involved in survival of the parasite responsible for malaria. Their findings, which may provide the basis for anti-malarial drug development, are currently published in the online version of the Journal of Medicinal Chemistry.

Tropical malaria is responsible for more than 1.2 million deaths annually. Severe forms of the disease are mainly caused by the parasite Plasmodium falciparum, transmitted to humans by female Anopheles mosquitoes. Malaria eradication has not been possible due to the lack of vaccines and the parasite's ability to develop resistance to most drugs.


This is an illustration of Anopheles darlingi.
Credit: UC San Diego School of Medicine

The researchers conducted high-throughput screening of nearly 350,000 compounds in the National Institutes of Health's Molecular Libraries Small Molecule Repository (MLSMR) to identify compounds that inhibit an enzyme which plays an important role in parasite development: Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD) is essential for proliferating and propagating P. falciparum.

"The enzyme G6PD catalyzes an initial step in a process that protects the malaria parasite from oxidative stress in red blood cells, creating an environment in which the parasite survives," said senior author Lars Bode, PhD, assistant professor in the UCSD Department of Pediatrics, Division of Neonatology and the Division of Gastroenterology, Hepatology and Nutrition. People with a natural deficiency in this enzyme are protected from malaria and its deadly symptoms, an observation that triggered the reported research.

The parasitic form of the enzyme (PfG6PD) is what contributes the majority of G6PD activity in infected red blood cells. Because the parasite lives in the blood of a malaria-infected person, the scientists aimed at identifying compounds that inhibit the parasitic form but not the human form of the enzyme. "We didn't want to interfere with the human form of the enzyme and risk potential side effects," Bode explained.

Scientific testing had previously been limited by a lack of recombinant PfG6PD. Team members in the lab of Katja Becker, PhD, at the Interdisciplinary Research Center at Justus-Liebig-University in Giessen, Germany produced the first complete and functional recombinant PfG6PD, and researchers led by Anthony Pinkerton, PhD, at Sanford-Burnham Medical Research Institute used it to identify the lead compound resulting from their efforts, ML276.

ML276 represents the first reported selective PfG6PD inhibitor, which stops the growth of malaria parasites in cultured red blood cells – even those parasites that developed resistance to currently available drugs. "ML276 is a very promising basis for future drug design of new anti-malarial therapeutics," said Bode.

Contributors to the study include Janina Preuss, UC San Diego, Justus-Liebig-University and Sanford-Burnham Medical Research Institute; Esther Jortzik, Stefan Rahlfs and Katja Becker, Justus-Liebig-University; Patrick Maloney, Satyamaheshwar Peddibhotla, Paul Hershberger, Eliot Sugarman, Becky Hood, Eigo Suyama, Kevin Nguyen, Stefan Vasile, Arianna Mangravita-Novo, Michael Vicchiarelli, Danielle McAnally, Layton H. Smith. Gregory P. Roth, Michael P. Hedrick, Palak Gosalia, Monika Milewski, Yujie Linda Li, Eduard Sergienko, Jena Diwan, Thomas D.Y. Chung, and Anthony B. Pinkerton, Sanford-Burnham.

The study was supported by the National Institutes of Health (1R21AI082434), the Deutsche Forschungsgemeinschaft, and an NIH Molecular Libraries grant (U54 HG005033) to the Conrad Prebys Center for Chemical Genomics at Sanford Burnham Medical Research Institute, one of the comprehensive centers of the NIH Molecular Libraries Probe Production Centers Network (MLPCN).

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>