Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel anti-malarial drug candidate found by UT Southwestern researchers in multicenter study

26.05.2010
As part of a multicenter study, UT Southwestern Medical Center researchers have identified a series of chemical compounds that might serve as starting points for the identification of new classes of anti-malarial drugs.
“Malaria remains one of the most globally significant infectious diseases that we face,” said Dr. Margaret Phillips, professor of pharmacology at UT Southwestern and one of the senior authors of the study, which appears in the May 20 issue of Nature. Malaria affects about 40 percent of the world’s population and kills about a million people a year, she said. The parasite that causes the disease is spread by mosquito bites.

Researchers, including Dr. Margaret Phillips (right) and Farah El Mazouni, have collaborated to identify a series of chemical compounds that might serve as starting points for new classes of anti-malarial drugs. Drugs are the mainstay of malaria treatment, yet the parasite is notorious for developing drug resistance, which compromises current therapy.

Drugs are the mainstay of malaria treatment, yet the malaria parasite is notorious for developing drug resistance, which compromises current chemotherapy.

“Novel chemical compounds with anti-malarial activity represent a potent tool in the process of developing new drugs to treat this disease,” Dr. Phillips said.

The study, done in collaboration with Dr. Kiplin Guy of St. Jude Children’s Research Hospital in Memphis and other researchers, started with a “library” of 309,474 chemical compounds.

The researchers used a technique called high throughput screening, which allowed them to test thousands of compounds quickly to identify those with anti-malarial action.

“In addition, publishing the full set of identified compounds will maximize the chances for the most-promising candidates to move into large-scale drug development programs,” Dr. Phillips said.

The screen identified 1,152 compounds that killed the parasite. The researchers then followed up with further tests to determine the mechanism of action of the identified compounds, where possible.

Dr. Phillips and her group tested whether any of the identified compounds killed malaria parasites by inhibiting an enzyme necessary to make pyrimidine, an intermediate molecule for creating DNA. She discovered that three of the library’s compounds with anti-malarial activity blocked this enzyme. Two of those had similar chemical structures to a class of known compounds that she and her colleagues have been studying for possible drug development. The third compound previously was not known to target the enzyme.

“It looked very different from anything we knew about before,” she said.

Having a variety of anti-malarial drugs with different chemical structures and modes of action is important because different types of drugs are given together to slow the parasite from developing resistance, Dr. Phillips said.

In all, the researchers from the various centers found 172 compounds that are “reasonable starting points” for development of new types of drugs.

“We call the identified candidates ‘hits,’ but if any of them are going to become drugs, they’re going to have to undergo chemical modification,” Dr. Phillips said. “For instance, they may need to be altered chemically to enter the cell more easily, or to improve their pharmacology so they will be more effective in people.”

Farah El Mazouni, senior research associate in pharmacology at UT Southwestern, also participated in this study. In addition, the researchers used the UT Southwestern High Throughput System resource in the Department of Biochemistry.

Other participating researchers were from St. Jude Children’s Research Hospital; Griffith University in Australia; the University of Washington, Seattle; the University of Pennsylvania; GlaxoSmithKline; the University of California, San Francisco; Johns Hopkins Bloomberg School of Public Health; the University of Pittsburgh; Medicines for Malaria Venture, Switzerland; the Portland VA Medical Center; and Rutgers, The State University of New Jersey.

The study was funded by the National Institutes of Health, the Welch Foundation, the Medicines for Malaria Venture and other organizations.

Media Contact: Aline McKenzie
214-648-3404
aline.mckenzie@utsouthwestern.edu

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>