Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel anti-malarial drug candidate found by UT Southwestern researchers in multicenter study

26.05.2010
As part of a multicenter study, UT Southwestern Medical Center researchers have identified a series of chemical compounds that might serve as starting points for the identification of new classes of anti-malarial drugs.
“Malaria remains one of the most globally significant infectious diseases that we face,” said Dr. Margaret Phillips, professor of pharmacology at UT Southwestern and one of the senior authors of the study, which appears in the May 20 issue of Nature. Malaria affects about 40 percent of the world’s population and kills about a million people a year, she said. The parasite that causes the disease is spread by mosquito bites.

Researchers, including Dr. Margaret Phillips (right) and Farah El Mazouni, have collaborated to identify a series of chemical compounds that might serve as starting points for new classes of anti-malarial drugs. Drugs are the mainstay of malaria treatment, yet the parasite is notorious for developing drug resistance, which compromises current therapy.

Drugs are the mainstay of malaria treatment, yet the malaria parasite is notorious for developing drug resistance, which compromises current chemotherapy.

“Novel chemical compounds with anti-malarial activity represent a potent tool in the process of developing new drugs to treat this disease,” Dr. Phillips said.

The study, done in collaboration with Dr. Kiplin Guy of St. Jude Children’s Research Hospital in Memphis and other researchers, started with a “library” of 309,474 chemical compounds.

The researchers used a technique called high throughput screening, which allowed them to test thousands of compounds quickly to identify those with anti-malarial action.

“In addition, publishing the full set of identified compounds will maximize the chances for the most-promising candidates to move into large-scale drug development programs,” Dr. Phillips said.

The screen identified 1,152 compounds that killed the parasite. The researchers then followed up with further tests to determine the mechanism of action of the identified compounds, where possible.

Dr. Phillips and her group tested whether any of the identified compounds killed malaria parasites by inhibiting an enzyme necessary to make pyrimidine, an intermediate molecule for creating DNA. She discovered that three of the library’s compounds with anti-malarial activity blocked this enzyme. Two of those had similar chemical structures to a class of known compounds that she and her colleagues have been studying for possible drug development. The third compound previously was not known to target the enzyme.

“It looked very different from anything we knew about before,” she said.

Having a variety of anti-malarial drugs with different chemical structures and modes of action is important because different types of drugs are given together to slow the parasite from developing resistance, Dr. Phillips said.

In all, the researchers from the various centers found 172 compounds that are “reasonable starting points” for development of new types of drugs.

“We call the identified candidates ‘hits,’ but if any of them are going to become drugs, they’re going to have to undergo chemical modification,” Dr. Phillips said. “For instance, they may need to be altered chemically to enter the cell more easily, or to improve their pharmacology so they will be more effective in people.”

Farah El Mazouni, senior research associate in pharmacology at UT Southwestern, also participated in this study. In addition, the researchers used the UT Southwestern High Throughput System resource in the Department of Biochemistry.

Other participating researchers were from St. Jude Children’s Research Hospital; Griffith University in Australia; the University of Washington, Seattle; the University of Pennsylvania; GlaxoSmithKline; the University of California, San Francisco; Johns Hopkins Bloomberg School of Public Health; the University of Pittsburgh; Medicines for Malaria Venture, Switzerland; the Portland VA Medical Center; and Rutgers, The State University of New Jersey.

The study was funded by the National Institutes of Health, the Welch Foundation, the Medicines for Malaria Venture and other organizations.

Media Contact: Aline McKenzie
214-648-3404
aline.mckenzie@utsouthwestern.edu

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>