Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-malaria drug synthesised with the help of oxygen and light

17.01.2012
In future it should be possible to produce the best anti-malaria drug, artemisinin, more economically and in sufficient volumes for all patients

The most effective anti-malaria drug can now be produced inexpensively and in large quantities. This means that it will be possible to provide medication for the 225 million malaria patients in developing countries at an affordable price.

Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and the Freie Universität Berlin have developed a very simple process for the synthesis of artemisinin, the active ingredient that pharmaceutical companies could only obtain from plants up to now. The chemists use a waste product from current artemisinin production as their starting substance. This substance can also be produced biotechnologically in yeast, which the scientists convert into the active ingredient using a simple yet very ingenious method.

There is an effective treatment against malaria, but it is not accessible to all of the more than 200 million people worldwide who are affected by the disease. Millions, especially in the developing world, cannot afford the combination drug preparation, which consists mainly of artemisinin. Moreover, the price for the medication varies, as this substance is isolated from sweet wormwood (Artemisia annua) which grows mainly in China and Vietnam, and varies seasonally in its availability. To make the drug affordable for at least some patients in developing countries, the Clinton Foundation, for example, subsidises its cost to the tune of several million dollars per year. Nevertheless, over one million people die of malaria each year because they do not have access to effective drugs.

This may be about to change. Peter H. Seeberger, Director at the Max Planck Institute of Colloids and Interfaces in Potsdam and Professor of Chemistry at the Freie Universität Berlin and his colleague François Lévesque have discovered a very simple way of synthesising the artemisinin molecule, which is known as an anti-malaria drug from traditional Chinese medicine and has an extremely complex chemical structure. “The production of the drug is therefore no longer dependent on obtaining the active ingredient from plants,” says Peter Seeberger.

Synthesis from a by-product of artemisinin production

As a starting point, the chemists use artemisinic acid – a substance produced as a hitherto unused by-product from the isolation of artemisinin from sweet wormwood, which is produced in volumes ten times greater than the active ingredient itself. Moreover, artemisinic acid can easily be produced in genetically modified yeast as it has a much simpler structure. “We convert the artemisinic acid into artemisinin in a single step,” says Peter Seeberger. “And we have developed a simple apparatus for this process, which enables the production of large volumes of the substance under very controlled conditions.” The only reaction sequence known up to now required several steps, following each of which the intermediate products had to be isolated laboriously – a method that was far too expensive to offer as a viable alternative to the production of the drug from plants.

The striking simplification of artemisinin synthesis required not only a keen sense for an elegant combination of the correct partial reactions to enable the process to take place in a single step; it also took a degree of courage, as the chemists departed from the paths typically taken by industry up to now. The effect of the molecule, which not only targets malaria but possibly also other infections and even breast cancer, is due to, among other things, a very reactive chemical group formed by two neighbouring oxygen atoms – which chemists refer to as an endoperoxide. Peter Seeberger and François Lévesque use photochemistry to incorporate this structural element into the artemisinic acid. Ultraviolet light converts oxygen into a form that can react with molecules to form peroxides.

800 photoreactors should suffice to cover the global requirement for artemisinin

“Photochemistry is a simple and cost-effective method. However, the pharmaceutical industry has not used it to date because it was so difficult to control and implement on a large scale,” explains Peter Seeberger. In the large reaction vessels with which industrial manufacturers work, flashes of light do not penetrate deeply enough from outside and the reactive form of oxygen is not produced in sufficient volumes. The Potsdam-based scientists have succeeded in resolving this problem using an ingenious trick: They channel the reaction mixture containing all of the required ingredients through a thin tube that they have wrapped around a UV lamp. In this structure, the light penetrates the entire reaction medium and triggers the chemical conversion process with optimum efficiency.

“The fact that we do not carry out the synthesis as a one-pot reaction in a single vessel, but in a continuous-flow reactor enables us to define the reaction conditions down to the last detail,” explains Peter Seeberger. After just four and a half minutes a solution flows out of the tube, in which 40 percent of the artemisinic acid has become artemisinin.

“We assume that 800 of our simple photoreactors would suffice to cover the global requirement for artemisinin,” says Peter Seeberger. And it could all happen very quickly. Peter Seeberger estimates that the innovative synthesis process could be ready for technical use in a matter of six months. This would alleviate the global shortage of artemisinin and exert considerable downward pressure on the price of the associated drugs.

Contact:

Prof. Dr. Peter H. Seeberger
Max Planck Institute of Colloids and Interfaces, Potsdam
Phone: +49 331 567-9301
Fax: +49 331 567-9102
Email: peter.seeberger@mpikg.mpg.de
Original publication:
François Lévesque and Peter H. Seeberger
Continuous-Flow Synthesis of the Anti-Malaria Drug ArtemisininOptional link
Angewandte Chemie international edition, 17 January 2012; DOI: 10.1002/anie.201107446

Prof. Dr. Peter H. Seeberger | Max-Planck-Institut
Further information:
http://www.mpikg.mpg.de

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>