Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Anti-Atkins” Low Protein Diet Extends Lifespan in Flies

05.10.2009
Flies fed an “anti-Atkins” low protein diet live longer because their mitochondria function better. The research, done at the Buck Institute for Age Research, shows that the molecular mechanisms responsible for the lifespan extension in the flies have important implications for human aging and diseases such as obesity, diabetes and cancer.

The findings, which appear in the October 2 edition of Cell, also provide a new level of understanding of the regulation of mitochondrial genes and open new avenues of inquiry into the interplay between mitochondrial function, diet and energy metabolism.

Mitochondria act as the “powerhouse” of the cells. It is well known that mitochondrial function worsens with age in many species and in humans with Type II diabetes and obesity. “Our study shows that dietary restriction can enhance mitochondrial function hence offsetting the age-related decline in its performance,” said Buck faculty member Pankaj Kapahi, PhD, lead author of the study.

The research provides the first genome-wide study of how proteins are translated under dietary restriction in any organism. The researchers report the unexpected finding that while there is a reduction in protein synthesis globally with the low protein diet, the activity of specific genes involved in generating energy in the mitochondria are increased, Kapahi said. That activity, which takes place at the level of conversion of RNA to protein, is important for the protective effects of dietary restriction, Kapahi said. “There have been correlative studies that show mitochondria change with dietary restriction, this research provides a causal relationship between diet and mitochondrial function,” he said.

The study describes a novel mechanism for how mitochondrial genes are converted from RNA to protein by a particular protein (d4EBP). Flies fed a low protein diet showed an uptick in activity of d4EBP, which is involved in a signaling pathway that mediates cell growth in response to nutrient availability called TOR (target of rapamycin). The research showed that d4EBP is necessary for lifespan extension upon dietary restriction. When the activity of the protein was genetically “knocked out” the flies did not live longer, even when fed the low protein diet. When the activity of d4EBP was enhanced, lifespan was extended, even when the flies ate a rich diet.

The research calls into question the health benefits of high-protein diets which are often used by humans to lose weight Kapahi said. The long-term impacts of such diets have not been examined in humans; they are likely to be harmful, he said. “In flies, we see that the long-lived diet is a low protein diet and what we have found here is a mechanism for how that may be working,” Kapahi said.

The study provides a significant advance in understanding the role of 4EBP, a downstream molecular target of TOR, which mediates a switch in metabolism to extend lifespan, Kapahi said. A recent study appearing in the Nature showed that feeding rapamycin (an antibiotic used to prevent the rejection of organ and bone marrow transplants) to mice inhibited TOR and extended their lifespan. The Buck Institute study implies an important role for 4EBP and mitochondrial function as excellent targets to explore their role in lifespan extension in mammals, Kapahi said.

Contributors to this work:
Other researchers involved in the study include Aric Rogers, Subhash D. Katewa, Miguel A. Vargas and Marysia Kolipinski of the Buck Institute; Brian M. Zid and Tony Au Lu of the California Institute of Technology, Pasadena, and Seymour Benzer, formerly of the California Institute of Technology, now deceased. The work was funded by grants from the National Institutes of Health (NIH); portions of the research were carried out in a laboratory facility supported by the National Center for Research Resources, a division of the NIH. Funding also included grants awarded by the Ellison Medical Foundation, the American Federation for Aging Research, the Larry L. Hillblom Foundation, and a gift from the Harold J. and Reta Haynes Family Foundation. The microarray work was supported by the Millard and Muriel Jacobs Genetics and Genomics Laboratory at California Institute of Technology.
About the Buck Institute for Age Research:
The Buck Institute is the only freestanding institute in the United States that is devoted solely to basic research on aging and age-associated disease. The Institute is an independent nonprofit organization dedicated to extending the healthspan, the healthy years of each individual’s life. The National Institute of Aging designated the Buck a “Nathan Shock Center of Excellence in the Basic Biology of Aging,” one of just five centers in the country. Buck Institute scientists work in an innovative, interdisciplinary setting to understand the mechanisms of aging and to discover new ways of detecting, preventing and treating conditions such as Alzheimer’s and Parkinson’s disease, cancer and stroke. Collaborative research at the Institute is supported by new developments in genomics, proteomics and bioinformatics technology.

Kris Rebillot | Newswise Science News
Further information:
http://www.buckinstitute.org

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>