Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-ageing hormone receptors

07.08.2013
A reduced caloric intake increases life expectancy in many species. But how diet prolongs the lives of model organisms such as roundworms has remained a mystery until recently.

Scientists at the Max Planck Institute for Biology of Ageing discovered that a hormone receptor is one of the links between nutrition and life expectancy in the roundworms. The receptor protein NHR-62 increases the lifespan of the animals by twenty per cent if their calorie intake is reduced.


Roundworm C. elegans
Picture: MPI for Biology of Ageing

Another study showed that the hormone receptor NHR-8 affects development into adulthood as well as the maximum lifespan of the worms. Possibly receptors related to these also regulate life expectancy in human beings.

The roundworm Caenorhabditis elegans lives only about 20 days. This makes it an ideal research subject, as the complete lifecycle of the worm can be studied in a short time. Also, the worm consists of less than a thousand cells, and its genetic make-up has been extensively analysed, and contains many genes similar to humans. The scientists in Adam Antebi’s team at the Max Planck Institute for Biology of Ageing use Caenorhabditis elegans to find out how hormones influence ageing. They are particularly interested in hormone receptors that reside in the cell nucleus, which regulate the activity of metabolic genes.

Their results indicate that the receptor NHR-62 must be active for reduced dietary intake to fully prolong the life of worms. If NHR-62 is inactive, Caenorhabditis elegans will live 25% longer under dietary restriction than if this receptor is inactive. “It seems that there is an as yet unknown hormone which regulates lifespan using NHR-62. If we can identify this hormone and administer it to the worm, we may prolong its life without having to change its calorie intake”, Antebi explains.

A restricted diet also affects the expression of genes dramatically: out of the approximate 20,000 worm genes, 3,000 change their activity, and 600 of these show a dependence on NHR-62. It follows that there are many other candidates for improving life expectancy. Since humans have receptors similar to NHR-62, so-called HNF-4α, the Max Planck scientists suspect that the hormone receptors may not only control the maximum lifespan of roundworms, but might affect human beings as well.

However, nutrition also affects lifespan in several other ways. Another study by the scientists has shown that worms lacking the hormone receptor NHR-8 will remain longer in a pre-pubertal stage before they reach adulthood. They also die earlier than animals with this receptor. NHR-8 is a nuclear receptor, responsible for the animal’s cholesterol balance. “Without it, the worm cannot produce enough steroid hormones from the cholesterol and therefore reaches sexual maturity later on. In addition, its fatty acid metabolism changes and its life expectancy drops”, explains Antebi. Receptors similar to NHR-8 can be found in human beings too. Conceivably cholesterol metabolism could therefore regulate physical development and affect life expectancy in humans as well.

Original publications:

Title: Dietary Restriction Induced Longevity is Mediated by Nuclear Receptor NHR-62 in Caenorhabditis elegans

Authors: Heestand, B.N., Shen, Y., Liu, W., Magner, D.B., Storm, N., Meharg, C., Habermann, B., and Antebi, A. (2013)

PLoS Genet 9(7): e1003651.

Title: The NHR-8 Nuclear Receptor Regulates Cholesterol and Bile Acid Homeostasis in C. elegans

Authors: Daniel B. Magner, Joshua Wollam, Yidong Shen, Caroline Hoppe, Dongling Li, Christian Latza, Veerle Rottiers, Harald Hutter, Adam Antebi

CellMetabolism, 6 August 2013

Contact:

Public Relations
Sabine Dzuck
Max Planck Institute for Biology of Ageing, Cologne
Tel.: +49 (0)221 37970-304
E-mail: sabine.dzuck@age.mpg.de
Katharina Möller
Max Planck Institute for Biology of Ageing, Cologne
Tel.: +49 (0)221 37970-302
E-mail: katharina.moeller@age.mpg.de
Prof. Dr. Adam Antebi
Max Planck Institute for Biology of Ageing, Cologne
Tel.: +49 (0)221 478-89680
E-mail: antebi@age.mpg.de
Dr. Dan Magner
Max Planck Institute for Biology of Ageing, Cologne
Tel.: +49 (0)221 478-89682
E-mail: daniel.magner@age.mpg.de

Sabine Dzuck | Max-Planck-Institut
Further information:
http://www.age.mpg.de

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>