Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-ageing hormone receptors

07.08.2013
A reduced caloric intake increases life expectancy in many species. But how diet prolongs the lives of model organisms such as roundworms has remained a mystery until recently.

Scientists at the Max Planck Institute for Biology of Ageing discovered that a hormone receptor is one of the links between nutrition and life expectancy in the roundworms. The receptor protein NHR-62 increases the lifespan of the animals by twenty per cent if their calorie intake is reduced.


Roundworm C. elegans
Picture: MPI for Biology of Ageing

Another study showed that the hormone receptor NHR-8 affects development into adulthood as well as the maximum lifespan of the worms. Possibly receptors related to these also regulate life expectancy in human beings.

The roundworm Caenorhabditis elegans lives only about 20 days. This makes it an ideal research subject, as the complete lifecycle of the worm can be studied in a short time. Also, the worm consists of less than a thousand cells, and its genetic make-up has been extensively analysed, and contains many genes similar to humans. The scientists in Adam Antebi’s team at the Max Planck Institute for Biology of Ageing use Caenorhabditis elegans to find out how hormones influence ageing. They are particularly interested in hormone receptors that reside in the cell nucleus, which regulate the activity of metabolic genes.

Their results indicate that the receptor NHR-62 must be active for reduced dietary intake to fully prolong the life of worms. If NHR-62 is inactive, Caenorhabditis elegans will live 25% longer under dietary restriction than if this receptor is inactive. “It seems that there is an as yet unknown hormone which regulates lifespan using NHR-62. If we can identify this hormone and administer it to the worm, we may prolong its life without having to change its calorie intake”, Antebi explains.

A restricted diet also affects the expression of genes dramatically: out of the approximate 20,000 worm genes, 3,000 change their activity, and 600 of these show a dependence on NHR-62. It follows that there are many other candidates for improving life expectancy. Since humans have receptors similar to NHR-62, so-called HNF-4α, the Max Planck scientists suspect that the hormone receptors may not only control the maximum lifespan of roundworms, but might affect human beings as well.

However, nutrition also affects lifespan in several other ways. Another study by the scientists has shown that worms lacking the hormone receptor NHR-8 will remain longer in a pre-pubertal stage before they reach adulthood. They also die earlier than animals with this receptor. NHR-8 is a nuclear receptor, responsible for the animal’s cholesterol balance. “Without it, the worm cannot produce enough steroid hormones from the cholesterol and therefore reaches sexual maturity later on. In addition, its fatty acid metabolism changes and its life expectancy drops”, explains Antebi. Receptors similar to NHR-8 can be found in human beings too. Conceivably cholesterol metabolism could therefore regulate physical development and affect life expectancy in humans as well.

Original publications:

Title: Dietary Restriction Induced Longevity is Mediated by Nuclear Receptor NHR-62 in Caenorhabditis elegans

Authors: Heestand, B.N., Shen, Y., Liu, W., Magner, D.B., Storm, N., Meharg, C., Habermann, B., and Antebi, A. (2013)

PLoS Genet 9(7): e1003651.

Title: The NHR-8 Nuclear Receptor Regulates Cholesterol and Bile Acid Homeostasis in C. elegans

Authors: Daniel B. Magner, Joshua Wollam, Yidong Shen, Caroline Hoppe, Dongling Li, Christian Latza, Veerle Rottiers, Harald Hutter, Adam Antebi

CellMetabolism, 6 August 2013

Contact:

Public Relations
Sabine Dzuck
Max Planck Institute for Biology of Ageing, Cologne
Tel.: +49 (0)221 37970-304
E-mail: sabine.dzuck@age.mpg.de
Katharina Möller
Max Planck Institute for Biology of Ageing, Cologne
Tel.: +49 (0)221 37970-302
E-mail: katharina.moeller@age.mpg.de
Prof. Dr. Adam Antebi
Max Planck Institute for Biology of Ageing, Cologne
Tel.: +49 (0)221 478-89680
E-mail: antebi@age.mpg.de
Dr. Dan Magner
Max Planck Institute for Biology of Ageing, Cologne
Tel.: +49 (0)221 478-89682
E-mail: daniel.magner@age.mpg.de

Sabine Dzuck | Max-Planck-Institut
Further information:
http://www.age.mpg.de

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>