Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anthrax bacteria conspire with viruses to stay alive

13.08.2009
By studying the life of Bacillus anthracis, scientists raise questions about how viruses may govern our own

The brute force of Bacillus anthracis, the ancient scourge that causes anthrax, can sweep through and overpower a two-ton animal in under 72 hours. But when it isn't busy claiming livestock and humans throughout the world -- up to 100,000 annually -- it resides ominously in the soil as a spore waiting for its next victim. Researchers at Rockefeller University now reveal that this deadly bacterium isn't the only master of its fate.

Its survival is directed and shaped by the DNA of bacteria-infecting viruses in what appears to be an evolutionary contract written to benefit both parties.

The research, led by Vincent A. Fischetti, head of the Laboratory of Bacterial Pathogenesis and Immunology, and Raymond Schuch, a research assistant professor in the lab, revamps the way scientists think about how pathogens exist in the environment in between outbreaks, focusing on the role viruses play during this dormant stage in the life cycle. The implications reach far and wide, from the sequencing of genomes to the recurrent and cyclical nature of disease.

"B. anthracis leads a much more complicated life than we had ever known," says Schuch, whose work will appear in the August issue of PLoS One. "Small, infecting viruses dramatically alter the survival capabilities of B. anthracis. It is more or less a symbiotic relationship in which the interests of both the bacterium and virus are kept in balance."

The secret life of anthrax-causing bacteria emerged from a seemingly innocuous observation made by Louis Pasteur more than 100 years ago. The famous bacteriologist found that earthworms were associated with anthrax-infected animal carcasses in the ground and hypothesized that the earthworm could play an important role in the life cycle of the deadly pest. For the first time, Shuch and Fischetti have now confirmed Pasteur's early hunch. They found that in the gut of the earthworm, B. anthracis infected with a type of virus, known as a bacteriophage, live longer than virus-free bacteria. The gut of the earthworm, they surmised, provides the infected bacteria with a safe niche in which to exist.

The researchers further show that in both the gut of the earthworm and the stark confines of a Petri dish, viruses can alter the lifestyle of B. anthracis in two principal ways. One is associated with the ability to build communities, the state in which bacteria prefer to live in the environment; the other affects the bacterium's ability to produce spores: round, dormant cells with a thick cell wall that enables them to endure harsh environmental conditions that the rod-shaped bacteria cannot. What's more, they found that depending on the conditions of the environment, the virus's DNA manipulates the bacterium's genome to toggle between spore production and community building.

The relationship appears to result from some sort of evolutionary contract that keeps the interests of bacterium and virus in balance. Since viruses cannot infect and grow in spores, they have an interest in silencing genes that ramp up spore production and in activating genes that help build B. anthracis communities. But when soil conditions threaten the survival of anthrax-causing bacteria, spawning a tougher line of defense to weather the soil's extreme conditions benefits both parties. The unveiling of the bacterium's life cycle opens up completely new strategies to combat anthrax infection, says Fischetti.

This isn't the first time that Fischetti and Schuch have seen that bacteriophages can affect the survival of B. anthracis. In 2006 they showed that infected anthrax-causing bacteria become more resistant to a natural antibiotic found in the soil. The new studies now go further, showing how these survival capabilities are not just affected by bacteriophages but actually depend on them.

Bacteriophages, the researchers found, exert their control via molecules known as sigma factors, which delegate proteins to turn specific host genes on or off. Different viruses encode different sigma factors, so the appearance of different traits depends on which virus infects the bacterium. While the DNA of some bacteriophages gets incorporated into the bacterium's single chromosome, the DNA of others exists as separate circular entities called episomes. These episomes can either stay inside one bacterium or flit in and out, infecting several bacteria in a matter of hours.

The finding has implications for the sequencing of genomes. "What that means is that sequencing the genome may not be enough," says Fischetti. "There are more than 1,000 known isolates of anthrax and there is little genetic variation between one isolate and the next. So at face value, it is a really boring genome. But what we see here is that the phage DNA, which works together with the anthrax genome, has always been overlooked."

If bacteriophages can govern the fate of bacteria and bacteria affect human health, the transformation of these bacteria may be able to explain the recurrent and cyclical nature of certain diseases. Humans have 10 times more bacteria on them or in them than the number of human cells, explains Fischetti. And there are 10 times more bacteriophages than there are bacteria. "Bacteriophages play a major role in us and what goes on around us in nature," he says. "I am convinced of that."

Thania Benios | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>