Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anthrax bacteria conspire with viruses to stay alive

13.08.2009
By studying the life of Bacillus anthracis, scientists raise questions about how viruses may govern our own

The brute force of Bacillus anthracis, the ancient scourge that causes anthrax, can sweep through and overpower a two-ton animal in under 72 hours. But when it isn't busy claiming livestock and humans throughout the world -- up to 100,000 annually -- it resides ominously in the soil as a spore waiting for its next victim. Researchers at Rockefeller University now reveal that this deadly bacterium isn't the only master of its fate.

Its survival is directed and shaped by the DNA of bacteria-infecting viruses in what appears to be an evolutionary contract written to benefit both parties.

The research, led by Vincent A. Fischetti, head of the Laboratory of Bacterial Pathogenesis and Immunology, and Raymond Schuch, a research assistant professor in the lab, revamps the way scientists think about how pathogens exist in the environment in between outbreaks, focusing on the role viruses play during this dormant stage in the life cycle. The implications reach far and wide, from the sequencing of genomes to the recurrent and cyclical nature of disease.

"B. anthracis leads a much more complicated life than we had ever known," says Schuch, whose work will appear in the August issue of PLoS One. "Small, infecting viruses dramatically alter the survival capabilities of B. anthracis. It is more or less a symbiotic relationship in which the interests of both the bacterium and virus are kept in balance."

The secret life of anthrax-causing bacteria emerged from a seemingly innocuous observation made by Louis Pasteur more than 100 years ago. The famous bacteriologist found that earthworms were associated with anthrax-infected animal carcasses in the ground and hypothesized that the earthworm could play an important role in the life cycle of the deadly pest. For the first time, Shuch and Fischetti have now confirmed Pasteur's early hunch. They found that in the gut of the earthworm, B. anthracis infected with a type of virus, known as a bacteriophage, live longer than virus-free bacteria. The gut of the earthworm, they surmised, provides the infected bacteria with a safe niche in which to exist.

The researchers further show that in both the gut of the earthworm and the stark confines of a Petri dish, viruses can alter the lifestyle of B. anthracis in two principal ways. One is associated with the ability to build communities, the state in which bacteria prefer to live in the environment; the other affects the bacterium's ability to produce spores: round, dormant cells with a thick cell wall that enables them to endure harsh environmental conditions that the rod-shaped bacteria cannot. What's more, they found that depending on the conditions of the environment, the virus's DNA manipulates the bacterium's genome to toggle between spore production and community building.

The relationship appears to result from some sort of evolutionary contract that keeps the interests of bacterium and virus in balance. Since viruses cannot infect and grow in spores, they have an interest in silencing genes that ramp up spore production and in activating genes that help build B. anthracis communities. But when soil conditions threaten the survival of anthrax-causing bacteria, spawning a tougher line of defense to weather the soil's extreme conditions benefits both parties. The unveiling of the bacterium's life cycle opens up completely new strategies to combat anthrax infection, says Fischetti.

This isn't the first time that Fischetti and Schuch have seen that bacteriophages can affect the survival of B. anthracis. In 2006 they showed that infected anthrax-causing bacteria become more resistant to a natural antibiotic found in the soil. The new studies now go further, showing how these survival capabilities are not just affected by bacteriophages but actually depend on them.

Bacteriophages, the researchers found, exert their control via molecules known as sigma factors, which delegate proteins to turn specific host genes on or off. Different viruses encode different sigma factors, so the appearance of different traits depends on which virus infects the bacterium. While the DNA of some bacteriophages gets incorporated into the bacterium's single chromosome, the DNA of others exists as separate circular entities called episomes. These episomes can either stay inside one bacterium or flit in and out, infecting several bacteria in a matter of hours.

The finding has implications for the sequencing of genomes. "What that means is that sequencing the genome may not be enough," says Fischetti. "There are more than 1,000 known isolates of anthrax and there is little genetic variation between one isolate and the next. So at face value, it is a really boring genome. But what we see here is that the phage DNA, which works together with the anthrax genome, has always been overlooked."

If bacteriophages can govern the fate of bacteria and bacteria affect human health, the transformation of these bacteria may be able to explain the recurrent and cyclical nature of certain diseases. Humans have 10 times more bacteria on them or in them than the number of human cells, explains Fischetti. And there are 10 times more bacteriophages than there are bacteria. "Bacteriophages play a major role in us and what goes on around us in nature," he says. "I am convinced of that."

Thania Benios | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>