Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can An Ant Be Employee-of-the-Month?

19.11.2008
Ants specializing on one job such as snatching food from a picnic are no more efficient than "Jane-of-all-trade" ants, according to new research.

The finding casts doubt on the idea that the world-wide success of ants stems from job specialization within the colony. Ants are found on every continent besides Antarctica.

"The question is, why is job specialization a good thing?" said Anna Dornhaus of The University of Arizona in Tucson. "We thought that the fact that ants have specialists was one of the things that made them so successful and live all over the world in all habitats in great numbers.

"It turns out that the ones that are specialized on a particular job are not particularly good at doing that job."

Dornhaus studied the rock ant, known by scientists as Temnothorax albipennis, that lives in cracks in rocks in Europe. In ant colonies, all the workers are females.

She videotaped individual ants as they performed four typical ant tasks:
brood transport, collecting sweets, foraging for animal protein and nest building. The videotape allowed her to compare how long it took each ant to do a particular task.

Dornhaus, a UA assistant professor of ecology and evolutionary biology, is publishing her paper, "Specialization Does Not Predict Individual Efficiency in an Ant," in the Nov. 18 issue of the online journal PLoS Biology. The German Science Foundation (DFG) funded some of the research.

Adam Smith, the father of modern economics, wrote in 1776 that specialized labor provided benefits to human industry.

Dornhaus, who studies social insects, wanted to see if this applied to ants because efficiency in ants had rarely been tested.

The workers of rock ants, like those of most ant species, all look the same and do not appear physically specialized for any particular task.

Nevertheless, they do specialize.

She expected rock ants that specialized would work more efficiently, but that's not what she found.

To identify the individual workers, which are half the size of a grain of rice, Dornhaus color-coded them with model airplane paint in colors such as rally green and racing red using hair-thin wires as paintbrushes.

She crafted nests for the ants by sandwiching cardboard squares between two glass slides. A tiny tunnel in the cardboard let the ants leave the nest.

Dornhaus tested 1,142 workers from 11 colonies that ranged in size from 27 to 233 workers.

To watch ants in action, Dornhaus put individual colonies in a square arena that was 22 centimeters (about eight-and-half inches) on a side and recorded workers' job performance with two video cameras.

For example, in the brood transport test, she placed a colony and an empty nest 10 centimeters (4 inches) apart. Then she took the roof off the colony's nest by taking off the top slide. Once their nest was destroyed, Dornhaus recorded how long the ants took to find the empty nest and move the eggs and larvae to it.

She measured how often and how readily an individual ant performed each task and considered an ant more specialized the more it concentrated its work on one task.

Dornhaus said some go-getter ants eagerly worked in all of the tasks, but other ants seemed lazy. Although the specialists were not more efficient, they put in more hours of work.

It's not known why ants choose the jobs they do, or why some are slow to begin work.

She said it might be explained by how quickly an individual detects work to be done, like noticing dirty dishes in the sink.

A person with a lower threshold will notice and wash the dishes as soon as there are one or two in the sink. However, a person with a higher threshold doesn't notice the dishes until there are at least 10 piled up. The dishes will still be washed, just not as frequently.

"You get division of labor that way just because they have differences in their sensory systems or somehow in the way they interpret the world without consciously wanting to divide labor," Dornhaus said.

The ability to sense work also varies in ants, she suspects.

Dornhaus found that specialists and generalists work equally fast, but the question of employee-of-the-month is still unanswered.

Even though putting in longer hours might seem like the way to success, it wastes colony resources.

"Speed does matter because every minute they spend outside is dangerous and energy costly," she said. "They burn fuel, and they risk dying."

Her next step is investigating "switching costs," such as the time it takes to walk from one side of the nest to the other or the break in concentration when switching between tasks. Dornhaus suggests specialization might minimize such costs.

"I do science because I think it's cool to find out how the world works, specifically how social insects works," Dornhaus said. "Isn't it cool to know that there are little societies underground everywhere you walk?"

This release was written by UA NASA Space Grant Intern Megan Levardo.

Researcher contact information:
Anna Dornhaus
(520) 626-5565
dornhaus@email.arizona.edu

Megan Levardo | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>