Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can An Ant Be Employee-of-the-Month?

19.11.2008
Ants specializing on one job such as snatching food from a picnic are no more efficient than "Jane-of-all-trade" ants, according to new research.

The finding casts doubt on the idea that the world-wide success of ants stems from job specialization within the colony. Ants are found on every continent besides Antarctica.

"The question is, why is job specialization a good thing?" said Anna Dornhaus of The University of Arizona in Tucson. "We thought that the fact that ants have specialists was one of the things that made them so successful and live all over the world in all habitats in great numbers.

"It turns out that the ones that are specialized on a particular job are not particularly good at doing that job."

Dornhaus studied the rock ant, known by scientists as Temnothorax albipennis, that lives in cracks in rocks in Europe. In ant colonies, all the workers are females.

She videotaped individual ants as they performed four typical ant tasks:
brood transport, collecting sweets, foraging for animal protein and nest building. The videotape allowed her to compare how long it took each ant to do a particular task.

Dornhaus, a UA assistant professor of ecology and evolutionary biology, is publishing her paper, "Specialization Does Not Predict Individual Efficiency in an Ant," in the Nov. 18 issue of the online journal PLoS Biology. The German Science Foundation (DFG) funded some of the research.

Adam Smith, the father of modern economics, wrote in 1776 that specialized labor provided benefits to human industry.

Dornhaus, who studies social insects, wanted to see if this applied to ants because efficiency in ants had rarely been tested.

The workers of rock ants, like those of most ant species, all look the same and do not appear physically specialized for any particular task.

Nevertheless, they do specialize.

She expected rock ants that specialized would work more efficiently, but that's not what she found.

To identify the individual workers, which are half the size of a grain of rice, Dornhaus color-coded them with model airplane paint in colors such as rally green and racing red using hair-thin wires as paintbrushes.

She crafted nests for the ants by sandwiching cardboard squares between two glass slides. A tiny tunnel in the cardboard let the ants leave the nest.

Dornhaus tested 1,142 workers from 11 colonies that ranged in size from 27 to 233 workers.

To watch ants in action, Dornhaus put individual colonies in a square arena that was 22 centimeters (about eight-and-half inches) on a side and recorded workers' job performance with two video cameras.

For example, in the brood transport test, she placed a colony and an empty nest 10 centimeters (4 inches) apart. Then she took the roof off the colony's nest by taking off the top slide. Once their nest was destroyed, Dornhaus recorded how long the ants took to find the empty nest and move the eggs and larvae to it.

She measured how often and how readily an individual ant performed each task and considered an ant more specialized the more it concentrated its work on one task.

Dornhaus said some go-getter ants eagerly worked in all of the tasks, but other ants seemed lazy. Although the specialists were not more efficient, they put in more hours of work.

It's not known why ants choose the jobs they do, or why some are slow to begin work.

She said it might be explained by how quickly an individual detects work to be done, like noticing dirty dishes in the sink.

A person with a lower threshold will notice and wash the dishes as soon as there are one or two in the sink. However, a person with a higher threshold doesn't notice the dishes until there are at least 10 piled up. The dishes will still be washed, just not as frequently.

"You get division of labor that way just because they have differences in their sensory systems or somehow in the way they interpret the world without consciously wanting to divide labor," Dornhaus said.

The ability to sense work also varies in ants, she suspects.

Dornhaus found that specialists and generalists work equally fast, but the question of employee-of-the-month is still unanswered.

Even though putting in longer hours might seem like the way to success, it wastes colony resources.

"Speed does matter because every minute they spend outside is dangerous and energy costly," she said. "They burn fuel, and they risk dying."

Her next step is investigating "switching costs," such as the time it takes to walk from one side of the nest to the other or the break in concentration when switching between tasks. Dornhaus suggests specialization might minimize such costs.

"I do science because I think it's cool to find out how the world works, specifically how social insects works," Dornhaus said. "Isn't it cool to know that there are little societies underground everywhere you walk?"

This release was written by UA NASA Space Grant Intern Megan Levardo.

Researcher contact information:
Anna Dornhaus
(520) 626-5565
dornhaus@email.arizona.edu

Megan Levardo | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>