Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can An Ant Be Employee-of-the-Month?

19.11.2008
Ants specializing on one job such as snatching food from a picnic are no more efficient than "Jane-of-all-trade" ants, according to new research.

The finding casts doubt on the idea that the world-wide success of ants stems from job specialization within the colony. Ants are found on every continent besides Antarctica.

"The question is, why is job specialization a good thing?" said Anna Dornhaus of The University of Arizona in Tucson. "We thought that the fact that ants have specialists was one of the things that made them so successful and live all over the world in all habitats in great numbers.

"It turns out that the ones that are specialized on a particular job are not particularly good at doing that job."

Dornhaus studied the rock ant, known by scientists as Temnothorax albipennis, that lives in cracks in rocks in Europe. In ant colonies, all the workers are females.

She videotaped individual ants as they performed four typical ant tasks:
brood transport, collecting sweets, foraging for animal protein and nest building. The videotape allowed her to compare how long it took each ant to do a particular task.

Dornhaus, a UA assistant professor of ecology and evolutionary biology, is publishing her paper, "Specialization Does Not Predict Individual Efficiency in an Ant," in the Nov. 18 issue of the online journal PLoS Biology. The German Science Foundation (DFG) funded some of the research.

Adam Smith, the father of modern economics, wrote in 1776 that specialized labor provided benefits to human industry.

Dornhaus, who studies social insects, wanted to see if this applied to ants because efficiency in ants had rarely been tested.

The workers of rock ants, like those of most ant species, all look the same and do not appear physically specialized for any particular task.

Nevertheless, they do specialize.

She expected rock ants that specialized would work more efficiently, but that's not what she found.

To identify the individual workers, which are half the size of a grain of rice, Dornhaus color-coded them with model airplane paint in colors such as rally green and racing red using hair-thin wires as paintbrushes.

She crafted nests for the ants by sandwiching cardboard squares between two glass slides. A tiny tunnel in the cardboard let the ants leave the nest.

Dornhaus tested 1,142 workers from 11 colonies that ranged in size from 27 to 233 workers.

To watch ants in action, Dornhaus put individual colonies in a square arena that was 22 centimeters (about eight-and-half inches) on a side and recorded workers' job performance with two video cameras.

For example, in the brood transport test, she placed a colony and an empty nest 10 centimeters (4 inches) apart. Then she took the roof off the colony's nest by taking off the top slide. Once their nest was destroyed, Dornhaus recorded how long the ants took to find the empty nest and move the eggs and larvae to it.

She measured how often and how readily an individual ant performed each task and considered an ant more specialized the more it concentrated its work on one task.

Dornhaus said some go-getter ants eagerly worked in all of the tasks, but other ants seemed lazy. Although the specialists were not more efficient, they put in more hours of work.

It's not known why ants choose the jobs they do, or why some are slow to begin work.

She said it might be explained by how quickly an individual detects work to be done, like noticing dirty dishes in the sink.

A person with a lower threshold will notice and wash the dishes as soon as there are one or two in the sink. However, a person with a higher threshold doesn't notice the dishes until there are at least 10 piled up. The dishes will still be washed, just not as frequently.

"You get division of labor that way just because they have differences in their sensory systems or somehow in the way they interpret the world without consciously wanting to divide labor," Dornhaus said.

The ability to sense work also varies in ants, she suspects.

Dornhaus found that specialists and generalists work equally fast, but the question of employee-of-the-month is still unanswered.

Even though putting in longer hours might seem like the way to success, it wastes colony resources.

"Speed does matter because every minute they spend outside is dangerous and energy costly," she said. "They burn fuel, and they risk dying."

Her next step is investigating "switching costs," such as the time it takes to walk from one side of the nest to the other or the break in concentration when switching between tasks. Dornhaus suggests specialization might minimize such costs.

"I do science because I think it's cool to find out how the world works, specifically how social insects works," Dornhaus said. "Isn't it cool to know that there are little societies underground everywhere you walk?"

This release was written by UA NASA Space Grant Intern Megan Levardo.

Researcher contact information:
Anna Dornhaus
(520) 626-5565
dornhaus@email.arizona.edu

Megan Levardo | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>