Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Annuals converted into perennials Only two genes make the difference between herbaceous plants and trees

10.11.2008
Scientists from VIB at Ghent University have succeeded in converting annual plants into perennials. They discovered that the deactivation of two genes in annuals led to the formation of structures that converted the plant into a perennial. This was most likely an important mechanism in plant evolution, initiating the formation of trees.

Annuals and perennials

Annual crops grow, blossom and die within one year. Perennials overwinter and grow again the following year. The life strategy of many annuals consists of rapid growth following germination and rapid transition to flower and seed formation, thus preventing the loss of energy needed to create permanent structures. They germinate quickly after the winter so that they come out before other plants, thus eliminating the need to compete for food and light. The trick is basically to make as many seeds as possible in as short a time as possible.

Perennials have more evolved life strategies for surviving in poor conditions. They compose perennial structures such as overwintering buds, bulbs or tubers. These structures contain groups with cells that are not yet specialised, but which can later be converted when required into new organs such as stalks and leaves.

The flowering of annuals

Annual crops consume all the non-specialised cells in developing their flowers. Thus the appearance of the flower signals means the end of the plant. But fortunately they have left seeds that sense – after winter – that the moment has come to start up. Plants are able to register the lengthening of the days. With the advent of longer days in the spring, a signal is sent from the leaves to the growth tops to activate a limited number of blooming-induction genes.

Deactivating two genes

VIB researchers, such as Siegbert Melzer in Tom Beeckman's group, have studied two such flower-inducing genes. They have deactivated them in thale cress (Arabidopsis thaliana), a typical annual. The VIB researchers found that mutant plants can no longer induce flowering, but they can continue to grow vegetatively or come into flower much later. Melzer had found that modified crops did not use up their store of non-specialised cells, enabling perennial growth. They can therefore continue to grow for a very long time.

As with real perennials these plants show secondary growth with wood formation creating shrub-like Arabidopsis plants.

Raising the veil of evolution

Researchers have been fascinated for a long time by the evolution of herbaceous to woody structures. This research clearly shows only two genes are in fact necessary in this process. This has probably been going on throughout the evolution of plants. Furthermore it is not inconceivable this happened independently on multiple occasions.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>