Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Annuals converted into perennials Only two genes make the difference between herbaceous plants and trees

10.11.2008
Scientists from VIB at Ghent University have succeeded in converting annual plants into perennials. They discovered that the deactivation of two genes in annuals led to the formation of structures that converted the plant into a perennial. This was most likely an important mechanism in plant evolution, initiating the formation of trees.

Annuals and perennials

Annual crops grow, blossom and die within one year. Perennials overwinter and grow again the following year. The life strategy of many annuals consists of rapid growth following germination and rapid transition to flower and seed formation, thus preventing the loss of energy needed to create permanent structures. They germinate quickly after the winter so that they come out before other plants, thus eliminating the need to compete for food and light. The trick is basically to make as many seeds as possible in as short a time as possible.

Perennials have more evolved life strategies for surviving in poor conditions. They compose perennial structures such as overwintering buds, bulbs or tubers. These structures contain groups with cells that are not yet specialised, but which can later be converted when required into new organs such as stalks and leaves.

The flowering of annuals

Annual crops consume all the non-specialised cells in developing their flowers. Thus the appearance of the flower signals means the end of the plant. But fortunately they have left seeds that sense – after winter – that the moment has come to start up. Plants are able to register the lengthening of the days. With the advent of longer days in the spring, a signal is sent from the leaves to the growth tops to activate a limited number of blooming-induction genes.

Deactivating two genes

VIB researchers, such as Siegbert Melzer in Tom Beeckman's group, have studied two such flower-inducing genes. They have deactivated them in thale cress (Arabidopsis thaliana), a typical annual. The VIB researchers found that mutant plants can no longer induce flowering, but they can continue to grow vegetatively or come into flower much later. Melzer had found that modified crops did not use up their store of non-specialised cells, enabling perennial growth. They can therefore continue to grow for a very long time.

As with real perennials these plants show secondary growth with wood formation creating shrub-like Arabidopsis plants.

Raising the veil of evolution

Researchers have been fascinated for a long time by the evolution of herbaceous to woody structures. This research clearly shows only two genes are in fact necessary in this process. This has probably been going on throughout the evolution of plants. Furthermore it is not inconceivable this happened independently on multiple occasions.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>