Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animals that resemble each other may be different species

23.04.2009
Animals that seem identical may belong to completely different species.

This is the conclusion of researchers at the University of Gothenburg, Sweden, who have used DNA analyses to discover that one of our most common segmented worms is actually two types of worm. The result is one of many suggesting that the variety of species on the earth could be considerably larger than we thought.

"We could be talking about a large number of species that have existed undiscovered because they resemble other known species," says Professor Christer Erséus.

The segmented worms that were studied by Christer Erséus, doctoral student Daniel Gustavsson and their American colleague, are identical in appearance. From the very first time that they were described, they have been treated as the same species, and they are also found together in freshwater environments in North America, Sweden and the rest of Europe.

But when the researchers examined the worms using advanced methods for DNA analysis, they discovered that they were in fact two different species. Both species of worm differ in one of the examined genes by 17 percent, which is twice as much as the equivalent difference between humans and chimpanzees.

The research results, which are being published in the journal Molecular Phylogenetics and Evolution, could have major consequences. For example, the worms are frequently used for laboratory testing around the world, to examine the effects of environmental toxins.

"Different species have different characteristics. If it emerged that these two species differ in terms of their tolerance towards certain toxins, then it could be difficult to make comparisons between different studies," says Christer Erséus.

And as this advanced DNA technology is tested increasingly within various animal groups, it could, according to Christer Erséus, mean that our perception of the earth's biodiversity may need to be revised.

"There could be ten times as many species in total, compared with what we previously thought," he says.

The new species of worm has not yet been given a name, since researchers have not yet decided which of the two will keep the old name, Lumbriculus variegatus.

For further information, please contact:
Christer Erséus, Professor at the Department of Zoology, University of Gothenburg
+46 (0)31-786 3645
+46 (0)703-576713
christer.erseus@zool.gu.se
Press contact
Krister Svahn
Public/Press Relations Officer
Faculty of Science, University of Gothenburg.
+46 (0)31 7864912
+46 (0)732 096339
krister.svahn@science.gu.se

Helena Aaberg | idw
Further information:
http://www.science.gu.se

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>