Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal models developed by researchers at IDIBELL and ICO can revolutionize the study of cancer

10.10.2012
Orthotopic implants of human tumor tissues in mice behave similarly as tumors growing in humans
They have proved their usefulness in a preclinical study evaluating a new treatment for ovarian cancer developed by Pharmamar

Some animal models developed by researchers at the Institute of Biomedical Research of Bellvitge (IDIBELL) and the Catalan Institute of Oncology (ICO) has served to validate the effectiveness of a new drug against ovarian cancer resistant to cisplatin. The multidisciplinary work, done in collaboration with the biopharmaceutical company Pharmamar, was published in the journal Clinical Cancer Research.

The human tumor tissue is implanted in the same nude mouse organ from which it came. This type of implant, called orthotopic, can reproduce the histological, genetic and epigenetic human tumors and the patterns of tumor spread, which is not achieved with other methods of implementation. Furthermore, these tumor models will be keys to the development of the so-called personalized medicine against various cancers. Besides ovarian tumors, researchers are experienced in orthotopic implantation of other tumors such as colon, pancreas, breast, endometrial or testicle, and liver metastases and neurofibromatosis. Researchers are currently developing models of lung, head and neck tumors.

The technique has shown the effectiveness of lurbinectedin (PM01183), a drug recently approved by the Food and Drug Administration (FDA) as "orphan drug" against ovarian cancer. This disease is the fifth leading cause of death among women. The survival rate is very low because it is often diagnosed at an advanced stage and appear resistances to chemotherapy with cisplatin. So, it is necessary to find alternative treatments.

The lurbinectedin is a marine-derived drug developed by the pharmaceutical company Pharmamar, from the Zeltia group, which has been shown effective against ovarian tumors resistant to cisplatin in several studies. One of the most compelling studies in preclinical level is the work published now in Clinical Cancer Research. The article confirms that orthotopic implants in laboratory mice are useful not only to deepen the knowledge of tumors, but also to collaborate with the pharmaceutical industry in the process of developing new drugs to treat cancer. Lurbinectedin has recently demonstrated its efficacy in a Phase II study in treatment-resistant ovarian cancer.

The coordinator of the study and researcher at the IDIBELL and ICO, Alberto Villanueva, highlights the importance of the models developed in his laboratory that "allow obtaining tumors grown in mice that reproduce the immunohistochemical, genetic and epigenetic properties of the human tumors and its response to chemotherapy with cisplatin, that is the base of the treatment against ovarian cancer."

Article reference

Lurbinectedin (PM01183), a New DNA Minor Groove Binder, Inhibits Growth of Orthotopic Primary Graft of Cisplatin-Resistant Epithelial Ovarian Cancer. Vidal A, Munoz C, Guillen MJ, Moreto J, Sara P, Martinez-Iniesta M, Figueras A, Padulles L, Garcia-Rodriguez FJ, Berdiel-Acer M, Pujana MA, Salazar R, Gil-Martin M, Marti L, Ponce J, Mollevi DG, Capella G, Condom E, Vinals F, Huertas D, Cuevas C, Esteller M, Aviles P, Villanueva A. Clin Cancer Res. 2012 Aug 15. [Epub ahead of print]

Raül Toran | EurekAlert!
Further information:
http://www.idibell.cat

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>