Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Animal models developed by researchers at IDIBELL and ICO can revolutionize the study of cancer

Orthotopic implants of human tumor tissues in mice behave similarly as tumors growing in humans
They have proved their usefulness in a preclinical study evaluating a new treatment for ovarian cancer developed by Pharmamar

Some animal models developed by researchers at the Institute of Biomedical Research of Bellvitge (IDIBELL) and the Catalan Institute of Oncology (ICO) has served to validate the effectiveness of a new drug against ovarian cancer resistant to cisplatin. The multidisciplinary work, done in collaboration with the biopharmaceutical company Pharmamar, was published in the journal Clinical Cancer Research.

The human tumor tissue is implanted in the same nude mouse organ from which it came. This type of implant, called orthotopic, can reproduce the histological, genetic and epigenetic human tumors and the patterns of tumor spread, which is not achieved with other methods of implementation. Furthermore, these tumor models will be keys to the development of the so-called personalized medicine against various cancers. Besides ovarian tumors, researchers are experienced in orthotopic implantation of other tumors such as colon, pancreas, breast, endometrial or testicle, and liver metastases and neurofibromatosis. Researchers are currently developing models of lung, head and neck tumors.

The technique has shown the effectiveness of lurbinectedin (PM01183), a drug recently approved by the Food and Drug Administration (FDA) as "orphan drug" against ovarian cancer. This disease is the fifth leading cause of death among women. The survival rate is very low because it is often diagnosed at an advanced stage and appear resistances to chemotherapy with cisplatin. So, it is necessary to find alternative treatments.

The lurbinectedin is a marine-derived drug developed by the pharmaceutical company Pharmamar, from the Zeltia group, which has been shown effective against ovarian tumors resistant to cisplatin in several studies. One of the most compelling studies in preclinical level is the work published now in Clinical Cancer Research. The article confirms that orthotopic implants in laboratory mice are useful not only to deepen the knowledge of tumors, but also to collaborate with the pharmaceutical industry in the process of developing new drugs to treat cancer. Lurbinectedin has recently demonstrated its efficacy in a Phase II study in treatment-resistant ovarian cancer.

The coordinator of the study and researcher at the IDIBELL and ICO, Alberto Villanueva, highlights the importance of the models developed in his laboratory that "allow obtaining tumors grown in mice that reproduce the immunohistochemical, genetic and epigenetic properties of the human tumors and its response to chemotherapy with cisplatin, that is the base of the treatment against ovarian cancer."

Article reference

Lurbinectedin (PM01183), a New DNA Minor Groove Binder, Inhibits Growth of Orthotopic Primary Graft of Cisplatin-Resistant Epithelial Ovarian Cancer. Vidal A, Munoz C, Guillen MJ, Moreto J, Sara P, Martinez-Iniesta M, Figueras A, Padulles L, Garcia-Rodriguez FJ, Berdiel-Acer M, Pujana MA, Salazar R, Gil-Martin M, Marti L, Ponce J, Mollevi DG, Capella G, Condom E, Vinals F, Huertas D, Cuevas C, Esteller M, Aviles P, Villanueva A. Clin Cancer Res. 2012 Aug 15. [Epub ahead of print]

Raül Toran | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First-time reconstruction of infectious bat influenza viruses
25.10.2016 | Universitätsklinikum Freiburg

nachricht The nanostructured cloak of invisibility
25.10.2016 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The nanostructured cloak of invisibility

25.10.2016 | Life Sciences

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

More VideoLinks >>>