Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal models developed by researchers at IDIBELL and ICO can revolutionize the study of cancer

10.10.2012
Orthotopic implants of human tumor tissues in mice behave similarly as tumors growing in humans
They have proved their usefulness in a preclinical study evaluating a new treatment for ovarian cancer developed by Pharmamar

Some animal models developed by researchers at the Institute of Biomedical Research of Bellvitge (IDIBELL) and the Catalan Institute of Oncology (ICO) has served to validate the effectiveness of a new drug against ovarian cancer resistant to cisplatin. The multidisciplinary work, done in collaboration with the biopharmaceutical company Pharmamar, was published in the journal Clinical Cancer Research.

The human tumor tissue is implanted in the same nude mouse organ from which it came. This type of implant, called orthotopic, can reproduce the histological, genetic and epigenetic human tumors and the patterns of tumor spread, which is not achieved with other methods of implementation. Furthermore, these tumor models will be keys to the development of the so-called personalized medicine against various cancers. Besides ovarian tumors, researchers are experienced in orthotopic implantation of other tumors such as colon, pancreas, breast, endometrial or testicle, and liver metastases and neurofibromatosis. Researchers are currently developing models of lung, head and neck tumors.

The technique has shown the effectiveness of lurbinectedin (PM01183), a drug recently approved by the Food and Drug Administration (FDA) as "orphan drug" against ovarian cancer. This disease is the fifth leading cause of death among women. The survival rate is very low because it is often diagnosed at an advanced stage and appear resistances to chemotherapy with cisplatin. So, it is necessary to find alternative treatments.

The lurbinectedin is a marine-derived drug developed by the pharmaceutical company Pharmamar, from the Zeltia group, which has been shown effective against ovarian tumors resistant to cisplatin in several studies. One of the most compelling studies in preclinical level is the work published now in Clinical Cancer Research. The article confirms that orthotopic implants in laboratory mice are useful not only to deepen the knowledge of tumors, but also to collaborate with the pharmaceutical industry in the process of developing new drugs to treat cancer. Lurbinectedin has recently demonstrated its efficacy in a Phase II study in treatment-resistant ovarian cancer.

The coordinator of the study and researcher at the IDIBELL and ICO, Alberto Villanueva, highlights the importance of the models developed in his laboratory that "allow obtaining tumors grown in mice that reproduce the immunohistochemical, genetic and epigenetic properties of the human tumors and its response to chemotherapy with cisplatin, that is the base of the treatment against ovarian cancer."

Article reference

Lurbinectedin (PM01183), a New DNA Minor Groove Binder, Inhibits Growth of Orthotopic Primary Graft of Cisplatin-Resistant Epithelial Ovarian Cancer. Vidal A, Munoz C, Guillen MJ, Moreto J, Sara P, Martinez-Iniesta M, Figueras A, Padulles L, Garcia-Rodriguez FJ, Berdiel-Acer M, Pujana MA, Salazar R, Gil-Martin M, Marti L, Ponce J, Mollevi DG, Capella G, Condom E, Vinals F, Huertas D, Cuevas C, Esteller M, Aviles P, Villanueva A. Clin Cancer Res. 2012 Aug 15. [Epub ahead of print]

Raül Toran | EurekAlert!
Further information:
http://www.idibell.cat

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>