Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ancient Whale Skulls and Directional Hearing: a Twisted Tale

Skewed skulls may have helped early whales discriminate the direction of sounds in water and are not solely, as previously thought, a later adaptation related to echolocation. University of Michigan researchers report the finding in a paper to be published online in the Proceedings of the National Academy of Sciences during the week of Aug. 22.

Asymmetric skulls are a well-known characteristic of the modern whale group known as odontocetes (toothed whales). These whales also have highly modified nasal structures with which they produce high-frequency sounds for echolocation---a sort of biological sonar used to navigate and find food. The other modern whale group, mysticetes (baleen whales), has symmetrical skulls and does not echolocate.

These observations led scientists to believe that archaeocetes---the extinct, ancient whales that gave rise to all modern whales---had symmetrical skulls, and that asymmetry later developed in toothed whales in concert with echolocation. But a new analysis of archaeocete skulls by U-M postdoctoral fellow Julia Fahlke and coauthors shows that asymmetry evolved much earlier, as part of a suite of traits linked to directional hearing in water.

"This means that the initial asymmetry in whales is not related to echolocation," said Fahlke, who is working with Philip Gingerich, an internationally recognized authority on whale evolution, at the U-M Museum of Paleontology.

When Fahlke first began working with Gingerich, who is the Ermine Cowles Case Collegiate Professor of Paleontology and professor of geological sciences, ecology and evolutionary biology and anthropology, she intended to study a completely different aspect of whale evolution: tooth form and function.

"Modern whales don't chew their food," Fahlke said. "Toothed whales just bite it and swallow it, and baleen whales filter feed. But archaeocetes have characteristic wear patterns on their teeth that show that they've been chewing their food." By studying those wear patterns, she hoped to piece together how and what early whales ate and how their eating habits changed over time. She started by studying the skull of Basilosaurus, a serpent-like, predatory whale that lived 37 million years ago, using a three-dimensional digital model generated from CT scans of the fossil that were acquired at the U-M Medical School Department of Radiology.

The actual skull on which the model was based was noticeably asymmetrical, but Fahlke and colleagues at first dismissed the irregularity.

"We thought, like everybody else before us, that this might have happened during burial and fossilization," Fahlke said. "Under pressure from sediments, fossils oftentimes deform." To correct for the deformation, coauthor Aaron Wood, a former U-M postdoctoral researcher who is now at the University of Florida, straightened out the skull in the digital model. But when Fahlke began working with the "corrected" model, the jaws just didn't fit together right. Frustrated, she stared at a cast of the actual skull, puzzling over the problem.

"Finally it dawned on me: Maybe archaeocete skulls really were asymmetrical," Fahlke said. She didn't have to go far to explore that idea; the U-M Museum of Paleontology houses one of the world's largest and most complete archaeocete fossil collections. Fahlke began examining archaeocete skulls, and to her astonishment, "they all showed the same kind of asymmetry---a leftward bend when you look at them from the top down," she said.

To study the asymmetry in a more rigorous way, Fahlke and colleagues selected six well-preserved skulls that showed no signs of artificial deformation and measured those skulls' deviation from a straight line drawn from snout to back of skull. For comparison, they made similar measurements of the decidedly symmetrical skulls of artiodactyls, the group of terrestrial mammals from which whales evolved.

"Taken together, the six skulls deviate significantly from symmetry," Fahlke said. "Taken individually, four of them deviate significantly." The other two appear asymmetrical, but their measurements fall within the range of the symmetrical comparative sample.

"This shows that asymmetry existed much earlier than previously thought---before the baleen whales and toothed whales split," Fahlke said. "This means that the earliest baleen whales must have had asymmetrical skulls, which later became symmetrical."

The authors also show in their paper that archaeocete asymmetry is a three-dimensional torsion, or twist that affects the whole skull, rather than only a two-dimensional bend. Interestingly, archaeocetes have structures similar to those that are known in toothed whales to function in directional hearing in water: fat bodies in their lower jaws that guide sound waves to the ears, and an area of bone on the outside of each lower jaw thin enough to vibrate and transmit sound waves into the fat body. This adaptation, along with the acoustic isolation of the ear region from the rest of the skull, appears to have evolved in concert with asymmetry.

The link between asymmetry and directional hearing is not unique to whales, Fahlke said.

"Owls have asymmetrical ear openings, which help them decompose complex sounds and interpret differences and space and time, so that they can discriminate the rustling of leaves around them from the rustling of a mouse on the ground," Fahlke said. "Such ability would also be helpful when you're trying to detect prey in the water, so we interpret that the same kind of mechanism was operating for archaeocetes."

In addition to Fahlke, Gingerich and Wood, the paper's authors include Robert C. Welsh a research assistant professor of radiology and of psychiatry at the U-M Medical School.

Funding was provided by the Alexander von Humboldt Foundation, the National Geographic Society and the National Science Foundation.

More information:
Julia Fahlke---
Philip Gingerich----

Proceedings of the National Academy of Sciences---

Nancy Ross-Flanigan | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>