Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Teeth Bacteria Record Disease Evolution

18.02.2013
DNA preserved in calcified bacteria on the teeth of ancient human skeletons has shed light on the health consequences of the evolving diet and behaviour from the Stone Age to the modern day.

The ancient genetic record reveals the negative changes in oral bacteria brought about by the dietary shifts as humans became farmers, and later with the introduction of food manufacturing in the Industrial Revolution.


Photo by Alan Cooper, University of Adelaide

Teeth of late Iron Age/Roman woman showing large dental calculus deposit, from Cambridge area, UK.

An international team, led by the University of Adelaide’s Centre for Ancient DNA (ACAD) where the research was performed, has published the results in Nature Genetics today. Other team members include the Department of Archaeology at the University of Aberdeen and the Wellcome Trust Sanger Institute in Cambridge (UK).

“This is the first record of how our evolution over the last 7500 years has impacted the bacteria we carry with us, and the important health consequences,” says study leader Professor Alan Cooper, ACAD Director.

“Oral bacteria in modern man are markedly less diverse than historic populations and this is thought to contribute to chronic oral and other disease in post-industrial lifestyles.”

The researchers extracted DNA from tartar (calcified dental plaque) from 34 prehistoric northern European human skeletons, and traced changes in the nature of oral bacteria from the last hunter-gatherers, through the first farmers to the Bronze Age and Medieval times.

“Dental plaque represents the only easily accessible source of preserved human bacteria,” says lead author Dr Christina Adler, who conducted the research while a PhD student at the University of Adelaide, now at the University of Sydney.

“Genetic analysis of plaque can create a powerful new record of dietary impacts, health changes and oral pathogen genomic evolution, deep into the past.”

Professor Cooper says: “The composition of oral bacteria changed markedly with the introduction of farming, and again around 150 years ago. With the introduction of processed sugar and flour in the Industrial Revolution, we can see a dramatically decreased diversity in our oral bacteria, allowing domination by caries-causing strains. The modern mouth basically exists in a permanent disease state.”

Professor Cooper has been working on the project with archaeologist and co-Leader Professor Keith Dobney, now at the University of Aberdeen, for the past 17 years. Professor Dobney says: “I had shown tartar deposits commonly found on ancient teeth were dense masses of solid calcified bacteria and food, but couldn’t identify the species of bacteria. Ancient DNA was the obvious answer.”

However, the team was not able to sufficiently control background levels of bacterial contamination until 2007 when ACAD’s ultra-clean laboratories and strict decontamination and authentication protocols became available. The research team is now expanding its studies through time, and around the world, including other species such as Neandertals.

Photo caption:
Teeth of late Iron Age/Roman woman showing large dental calculus deposit, from Cambridge area, UK. Photo by Alan Cooper, University of Adelaide
Media Contact:
Professor Alan Cooper
Director, Australian Centre for Ancient DNA
The University of Adelaide
Phone: +61 8 8313 5950 / 8313 3952
Mobile: +61 406 383 884
alan.cooper@adelaide.edu.au
Robyn Mills
Media and Communications Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | Newswise
Further information:
http://www.adelaide.edu.au

Further reports about: Ancient African Exodus Bronze Age DNA Disease Evolution Industrial Supply bacteria teeth

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>