Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Sharks Reared Young in Prehistoric River-Delta Nursery

08.01.2014
Like salmon in reverse, long-snouted Bandringa sharks migrated downstream from freshwater swamps to a tropical coastline to spawn 310 million years ago, leaving behind fossil evidence of one of the earliest known shark nurseries.

That's the surprising conclusion of University of Michigan paleontologist Lauren Sallan and a University of Chicago colleague, who reanalyzed all known specimens of Bandringa, a bottom-feeding predator that lived in an ancient river delta system that spanned what is today the Upper Midwest.


Painting by John Megahan, University of Michigan.

An artist's rendering of Bandringa, a 310 million-year-old shark originally found in fossil deposits from Mazon Creek, Illinois. University of Michigan paleontologist Lauren Sallan and a colleague say this bottom-feeding predator migrated to the ocean to spawn in shallow coastal waters and left behind fossil evidence of one of the earliest known shark nurseries

The new findings, scheduled for online publication Jan. 7 in the Journal of Vertebrate Paleontology, mark the earliest known example of shark migration—a behavior that persists today among species such as tiger sharks in Hawaii.

The Bandringa fossils, as reinterpreted by Sallan and Michael Coates, also reveal the only known example of a freshwater to saltwater shark migration, as well as the earliest example of a shark nursery where fossilized egg cases and juvenile sharks were preserved in the same sediments.

"This pushes migratory behavior in sharks way back," said Sallan, an assistant professor in the U-M Department of Ecology and Evolutionary Biology. "These sharks bred in the open ocean and spent the rest of their lives in fresh water. No shark alive today is known to do that."

The long-extinct Bandringa is likely one of the earliest close relatives of modern sharks. It resembled present-day sawfish and paddlefish, with a spoon-billed snout up to half its body length. Juveniles were 4 to 6 inches long and grew into adults of up to 10 feet.

Bandringa was discovered in 1969 and soon became one of the most prized fossils from the well-known Mazon Creek deposits in northern Illinois. Until now, researchers believed that the genus Bandringa contained two species, one that lived in freshwater swamps and rivers and another that lived in the shallow ocean.

But after reevaluating fossils from 24 individuals, including latex "peels" of Bandringa's scale-covered skin, Sallan and Coates concluded that Bandringa was a single species that lived, at various times during its life, in fresh, brackish and salt water.

The physical differences between the two purported species were due to different preservation processes at marine and freshwater locations, Sallan and Coates concluded. The freshwater sites tended to preserve bones and cartilage, while the marine sites preserved soft tissue.

By combining the complementary data sets from both types of fossil sites and reclassifying Bandringa as a single species, Sallan and Coates gained a far more complete picture of the extinct shark's anatomy and discovered several previously unreported features. They include downward-directed jaws ideal for suction-feeding off the bottom, needle-like spines on the head and cheeks, and a complex array of sensory organs (electroreceptors and mechanoreceptors) on both the extended snout and body, suited for detecting prey in murky water.

Adult Bandringa sharks lived exclusively in freshwater swamps and rivers, according to Sallan and Coates. Females apparently traveled downstream to a tropical coastline to lay their eggs in shallow marine waters, a reverse version of the modern-day salmon's sea-to-stream migration. At the time, the coastline of the super-continent Pangaea ran diagonally between the Mazon Creek freshwater and marine sites.

All the Bandringa fossils from the Mazon Creek marine sites are juveniles, and they were found alongside egg cases—protective capsules that enclose eggs of the next generation—belonging to an early species of shark. Adult Bandringa fossils have been found only at freshwater locations, including several in Ohio and Pennsylvania.

Sallan and Coates said that the juvenile Bandringa sharks hatched from the Mazon Creek egg cases, and that the deposit's marine sites represent a shark nursery where females spawned and then departed, returning upstream to freshwater rivers and swamps.

"This is the first fossil evidence for a shark nursery that's based on both egg cases and the babies themselves," Sallan said. "It's also the earliest evidence for segregation, meaning that juveniles and adults were living in different locations, which implies migration into and out of these nursery waters."

The Mazon Creek deposit is known for its extremely diverse, well-preserved fossils, with more than 320 animal species identified, according to the Illinois State Museum.

Many of those animals lived in shallow marine bays. Other plants and animals lived in swampy areas along rivers that emptied into the bay. When the remains of all these plants and animals sank to the bottom of the bay, they were rapidly buried by mud washing in from the river, which preserved them.

Financial support for the project was provided by the National Science Foundation, the University of Chicago, the University of Michigan and the Michigan Society of Fellows.

EDITORS: High-resolution images are available at http://bit.ly/1bPPAVQ

Jim Erickson | Newswise
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Perseus translates proteomics data
27.07.2016 | Max-Planck-Institut für Biochemie

nachricht Severity of enzyme deficiency central to favism
26.07.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>