Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Red Dye Powers New “Green” Battery

12.12.2012
CCNY chemists use plant extract in eco-friendly, sustainable lithium-ion battery
Rose madder – a natural plant dye once prized throughout the Old World to make fiery red textiles – has found a second life as the basis for a new “green” battery.

Chemists from The City College of New York teamed with researchers from Rice University and the U.S. Army Research Laboratory to develop a non-toxic and sustainable lithium-ion battery powered by purpurin, a dye extracted from the roots of the madder plant (Rubia species).

More than 3,500 years ago, civilizations in Asia and the Middle East first boiled madder roots to color fabrics in vivid oranges, reds and pinks. In its latest technological incarnation, the climbing herb could lay the foundation for an eco-friendly alternative to traditional lithium-ion (Li-ion) batteries. These batteries charge everything from your mobile phone to electric vehicles, but carry with them risks to the environment during production, recycling and disposal.

“Purpurin,” on the other hand, said team member and City College Professor of Chemistry George John, “comes from nature and it will go back to nature.” The team reports their results in the journal Nature’s online and open access publication, Scientific Reports, on December 11, 2012.

Most Li-ion batteries today rely on finite supplies of mined metal ores, such as cobalt. “Thirty percent of globally produced cobalt is fed into battery technology,” noted Dr. Leela Reddy, lead author and a research scientist in Professor Pulickel Ajayan’s lab in the Department of Mechanical Engineering and Materials Science at Rice University. The cobalt salt and lithium are combined at high temperatures to make a battery’s cathode, the electrode through which the electric current flows.

Mining cobalt metal and transforming it, however, is expensive, Dr. Reddy explained. Fabricating and recycling standard Li-ion batteries demands high temperatures, guzzling costly energy, especially during recycling. “In 2010, almost 10 billion lithium-ion batteries had to be recycled,” he said .

Production and recycling also pumps an estimated 72 kilograms of carbon dioxide – a greenhouse gas – into the atmosphere for every kilowatt-hour of energy in a Li-ion battery, he noted. These grim facts have fed a surging demand to develop green batteries, said Dr. Reddy.

Fortunately, biologically based color molecules, like purpurin and its relatives, seem pre-adapted to act as a battery’s electrode. In the case of purpurin, the molecule’s six-membered (aromatic) rings are festooned with carbonyl and hydroxyl groups adept at passing electrons back and forth, just as traditional electrodes do. “These aromatic systems are electron-rich molecules that easily coordinate with lithium,” explained Professor John.

Moreover, growing madder or other biomass crops to make batteries would soak up carbon dioxide and eliminate the disposal problem – without its toxic components, a lithium-ion battery could be thrown away.

Best of all, purpurin also turns out to be a no-fuss ingredient. “In the literature there are one or two other natural organic molecules in development for batteries, but the process to make them is much more tedious and complicated,” noted Professor John.

Made and stored at room temperature, the purpurin electrode is made in just a few easy steps: dissolve the purpurin in an alcohol solvent and add lithium salt. When the salt’s lithium ion binds with purpurin the solution turns from reddish yellow to pink. Remove the solvent and it's ready. “The chemistry is quite simple,” coauthor and City College postdoctoral researcher Dr. Subbiah Nagarajan explained.

The team estimates that a commercial green Li-ion battery may be only a few years away, counting the time needed to ramp up purpurin’s efficiency or hunt down and synthesize similar molecules. “We can say it is definitely going to happen, and sometime soon, because in this case we are fully aware of the mechanism,” said Professor John.

“When you can generate something new or unheard of, you think of chemistry in a different way,” he added. “That a natural material or dye can be used for a battery, that is exciting, even for me.”

Coauthors include postdoctoral researcher Subbiah Nagarajan, facilities manager Padmanava Pradhan, and graduate student Swapnil Jadhav of the City College of New York; visiting scholar Porramate Chumyim, former postdoctoral fellow Sanketh Gowda and Professor Pulickel Ajayan of Rice University; and Madan Dubey of the U.S. Army Research Laboratory.

The National Science Foundation and the U.S. Army Research Office funded this research.

Reference:

Reddy, A.L.M. et al. Lithium storage mechanisms in purpurin based
organic lithium ion battery electrodes. Sci. Rep. 2, 960; doi:10.1038/srep00960
11 Dec 2012.

Online:
Professor George John
Rice University Ajayan Lab (Incl. L. Reddy)
Media Contact
Jessa Netting
P | 212-650-7615
E | jnetting@ccny.cuny.edu

Jessa Netting | EurekAlert!
Further information:
http://www2.ccny.cuny.edu/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>