Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Red Dye Powers New “Green” Battery

12.12.2012
CCNY chemists use plant extract in eco-friendly, sustainable lithium-ion battery
Rose madder – a natural plant dye once prized throughout the Old World to make fiery red textiles – has found a second life as the basis for a new “green” battery.

Chemists from The City College of New York teamed with researchers from Rice University and the U.S. Army Research Laboratory to develop a non-toxic and sustainable lithium-ion battery powered by purpurin, a dye extracted from the roots of the madder plant (Rubia species).

More than 3,500 years ago, civilizations in Asia and the Middle East first boiled madder roots to color fabrics in vivid oranges, reds and pinks. In its latest technological incarnation, the climbing herb could lay the foundation for an eco-friendly alternative to traditional lithium-ion (Li-ion) batteries. These batteries charge everything from your mobile phone to electric vehicles, but carry with them risks to the environment during production, recycling and disposal.

“Purpurin,” on the other hand, said team member and City College Professor of Chemistry George John, “comes from nature and it will go back to nature.” The team reports their results in the journal Nature’s online and open access publication, Scientific Reports, on December 11, 2012.

Most Li-ion batteries today rely on finite supplies of mined metal ores, such as cobalt. “Thirty percent of globally produced cobalt is fed into battery technology,” noted Dr. Leela Reddy, lead author and a research scientist in Professor Pulickel Ajayan’s lab in the Department of Mechanical Engineering and Materials Science at Rice University. The cobalt salt and lithium are combined at high temperatures to make a battery’s cathode, the electrode through which the electric current flows.

Mining cobalt metal and transforming it, however, is expensive, Dr. Reddy explained. Fabricating and recycling standard Li-ion batteries demands high temperatures, guzzling costly energy, especially during recycling. “In 2010, almost 10 billion lithium-ion batteries had to be recycled,” he said .

Production and recycling also pumps an estimated 72 kilograms of carbon dioxide – a greenhouse gas – into the atmosphere for every kilowatt-hour of energy in a Li-ion battery, he noted. These grim facts have fed a surging demand to develop green batteries, said Dr. Reddy.

Fortunately, biologically based color molecules, like purpurin and its relatives, seem pre-adapted to act as a battery’s electrode. In the case of purpurin, the molecule’s six-membered (aromatic) rings are festooned with carbonyl and hydroxyl groups adept at passing electrons back and forth, just as traditional electrodes do. “These aromatic systems are electron-rich molecules that easily coordinate with lithium,” explained Professor John.

Moreover, growing madder or other biomass crops to make batteries would soak up carbon dioxide and eliminate the disposal problem – without its toxic components, a lithium-ion battery could be thrown away.

Best of all, purpurin also turns out to be a no-fuss ingredient. “In the literature there are one or two other natural organic molecules in development for batteries, but the process to make them is much more tedious and complicated,” noted Professor John.

Made and stored at room temperature, the purpurin electrode is made in just a few easy steps: dissolve the purpurin in an alcohol solvent and add lithium salt. When the salt’s lithium ion binds with purpurin the solution turns from reddish yellow to pink. Remove the solvent and it's ready. “The chemistry is quite simple,” coauthor and City College postdoctoral researcher Dr. Subbiah Nagarajan explained.

The team estimates that a commercial green Li-ion battery may be only a few years away, counting the time needed to ramp up purpurin’s efficiency or hunt down and synthesize similar molecules. “We can say it is definitely going to happen, and sometime soon, because in this case we are fully aware of the mechanism,” said Professor John.

“When you can generate something new or unheard of, you think of chemistry in a different way,” he added. “That a natural material or dye can be used for a battery, that is exciting, even for me.”

Coauthors include postdoctoral researcher Subbiah Nagarajan, facilities manager Padmanava Pradhan, and graduate student Swapnil Jadhav of the City College of New York; visiting scholar Porramate Chumyim, former postdoctoral fellow Sanketh Gowda and Professor Pulickel Ajayan of Rice University; and Madan Dubey of the U.S. Army Research Laboratory.

The National Science Foundation and the U.S. Army Research Office funded this research.

Reference:

Reddy, A.L.M. et al. Lithium storage mechanisms in purpurin based
organic lithium ion battery electrodes. Sci. Rep. 2, 960; doi:10.1038/srep00960
11 Dec 2012.

Online:
Professor George John
Rice University Ajayan Lab (Incl. L. Reddy)
Media Contact
Jessa Netting
P | 212-650-7615
E | jnetting@ccny.cuny.edu

Jessa Netting | EurekAlert!
Further information:
http://www2.ccny.cuny.edu/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>