Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anchoring proteins influence glucose metabolism and insulin release

03.09.2012
Scientists from the United States and Sweden have discovered a new control point that could be important as a drug target for the treatment of diabetes and other metabolic diseases.

A-kinase anchoring proteins or AKAPs are known to influence the spatial distribution of kinases within the cell, crucial enzymes that control important molecular events related to the regulation of glucose levels in the blood.


A-kinase anchoring protein: a potential new drug target for diabetes

Image: John D Scott & EMBO

In a new study published in The EMBO Journal, the team of researchers led by Simon Hinke and John Scott reveal for the first time that AKAPs influence the levels of glucose in the body by coordinating the spatial positioning of phosphatases, naturally occurring enzymes that counteract the effects of kinase enzymes.

“Our discovery that anchored enzymes contribute to the regulation of cellular events that underlie diabetes may help us to move more rapidly toward new therapies to control this increasingly prevalent metabolic disease,” commented John Scott, Edwin G. Krebs–Hilma Speights Professor of Pharmacology at the University of Washington School of Medicine, Seattle and an investigator of the Howard Hughes Medical Institute. “The observation that AKAP 150 functions by coordinating phosphatase activity in the cell reveals a new role for these anchoring proteins in the control of glucose metabolism and related metabolic disorders. It also suggests that new drugs that interfere with the role of anchoring proteins are possible therapeutic interventions to treat chronic diseases such as diabetes.”

The researchers used imaging techniques as well as genetic modification of isolated insulin-secreting cells and whole mice to investigate the impact of anchoring proteins on glucose metabolism and insulin release. Mice that lacked the gene for the AKAP150 anchoring protein produced less insulin from beta cells in the islets of Langerhans. However, they coped better with limited amounts of hormone due to increased sensitivity to insulin in the target tissues (skeletal muscle). The scientists showed that these effects are due to a seven-amino-acid sequence in the anchor protein that directly interacts with the surface of the phosphatase enzyme.
The release of insulin is the main way in which the levels of glucose are controlled in the body. If it is possible to develop drugs that target the region where anchoring proteins specifically interact with phosphatase enzymes it is feasible that insulin sensitivity could be improved in selected tissues such as skeletal muscle. This would represent a valuable new molecular control point that might offer clinical benefits for diabetics, individuals with other metabolic disorders and patients who are being treated with immunosuppressive drugs following organ transplantation.

Anchored phosphatases modulate glucose homeostasis

Simon A. Hinke, Manuel F Navedo, Allison Ulman, Jennifer L Whiting, Patrick J Nygren, Geng Tian, Antonio J Jimenez-Caliani, Lorene K Langeberg, Vincenzo Cirulli, Anders Tengholm, Mark L Dell’Acqua, L Fernando Santana, John D Scott

Read the paper:
10.1038/emboj.2012.244

Further information on The EMBO Journal is available at http://www.nature.com/emboj

Media Contacts
Barry Whyte
Head | Public Relations and Communications

Yvonne Kaul
Communications Offer
Tel: +49 6221 8891 108/111
communications@embo.org

About EMBO
EMBO stands for excellence in the life sciences. The organization enables the best science by supporting talented researchers, stimulating scientific exchange and advancing policies for a world-class European research environment.

EMBO is an organization of 1500 leading life scientist members that fosters new generations of researchers to produce world-class scientific results. EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in cutting-edge techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | EMBO
Further information:
http://www.embo.org
http://www.embo.org/news-a-media-centre/press-releases/anchoring-proteins-influence-glucose-metabolism-and-insulin-release.html
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2012244a.html

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>