Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancestors of land plants revealed

18.04.2011
It was previously thought that land plants evolved from stonewort-like algae. However, new research published in BioMed Central's open access journal BMC Evolutionary Biology shows that the closest relatives to land plants are actually conjugating green algae such as Spirogyra.

Ancestors of green plants began to colonise the land about 500 million years ago and it is generally accepted that they evolved from streptophyte algae (a group of green, fresh water algae). But this group of algae is very diverse and currently ranges from simple, one cell, flagellates to more complex, branching, algae such as stoneworts (Chara).

It was thought that Charales were the closest relatives to land plants because they share (amongst other characteristics) a similar method of fertilisation, oogamy, with a large egg and small swimming sperm. For flowering plants this sperm is contained within pollen grains. In contrast, another type of streptophytes, the Zygnematales, use conjugation, a method of reproduction where the gametes are of equal size, isogamy, and one or both crawl, amoeba-like, into a fertilization tube where they meet and fuse.

Some phylogenetic analysis had been done previously, on a smaller number of genes, which seemed to support the Charales theory. However, a multinational team, involving researchers in Germany and Canada, analysed genetic divergence in 129 genes from 40 different green plant taxa. This data showed that, despite the differences in reproductive strategy, the closest living relatives to land plants are in fact the Zygnematales.

Dr Becker explained, "It seems that Zygnematales have lost oogamy and their ability to produce sperm and egg cells, and instead, possibly due to selection pressure in the absence of free water, use conjugation for reproduction. Investigation of such a large number of genes has shown that, despite their apparent simplicity, Zygnematales have genetic traces of other complex traits also associated with green land plants. Consequently Zygnematales true place as the closest living relative to land plants has been revealed."

Media Contact
Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Email: hilary.glover@biomedcentral.com
Notes to Editors
1. Origin of land plants: Do conjugating green algae hold the key?
Sabina Wodniok, Henner Brinkmann, Gernot Glöckner, Andrew J Heidel, Hervé Philippe, Michael Melkonian and Burkhard Becker

BMC Evolutionary Biology (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Evolutionary Biology is an Open Access, peer-reviewed online journal that considers articles on all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>