Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analytical tool developed by Hebrew University scientists to tackle question of how brain cells work together to react

01.04.2009
An interdisciplinary team of scientists at the Hebrew University of Jerusalem has developed a new analytical tool to answer the question of how our brain cells record outside stimuli and react to them.

Although much progress has been made in understanding the brain in recent decades, scientists still know relatively little about how these processes function. The two key problems in making progress in this field are that there will never be enough real data in terms of measuring what the brain actually does, and even if there were, there haven’t been enough methods for analyzing such data and using them to answer the question of how neural coding actually takes place.

The analytical method developed by the Hebrew University researchers should be able to provide an indication, for example, of how many neurons encode a given stimulus such as reactions to a face or a movement and how they collaborate to do it.

Current technology allows researchers only a very partial view of brain activity. For example, one cannot record the activity of more than a few hundred nerve cells from the cortex of a behaving animal. Methods like MRI imaging can map larger brain areas, but cannot be used to measure single neurons. A key question then remains of what one can learn from such a partial view.

The Hebrew University researchers, headed by Dr. Amir Globerson of the Rachel and Selim Benin School of Computer Science and Engineering, have formulated the novel principle of Minimum Mutual Information (MinMI) to tackle the issue. An article detailing their findings has been published online in the Proceedings of the National Academy of Sciences (PNAS) in the US.

In the article, the researchers provide analyses of both real and simulated data. Their method permits quantification of information in the brain about behavior, given sets of very partial measurements. The key insight to obtaining such results is to consider, via computer simulations, a set of "hypothetical brains" that could have generated the combination of the observed measurements, and then drawing conclusions that are valid for all the brains in this set. Although this seems like a daunting computational task, the researchers have shown that it can be achieved in some cases.

The real data was recorded from monkeys in the laboratory of Prof. Eilon Vaadia, who is the Jack H. Skirball Professor of Brain Research at the Hebrew University- Hadassah Medical School and the Interdisciplinary Center for Neural Computation at the Hebrew University.

The research was carried out as part of Dr. Globerson’s Ph.D. thesis at the Interdisciplinary Center for Neural Computation, and in collaboration with Dr. Eran Stark (who at the time was a graduate student at the Hebrew University- Hadassah Medical School) and with Dr. Globerson’s Ph.D. advisors, Prof. Naftali Tishby and Prof. Vaadia. Prof. Tishby is a professor at the the School of Computer Science and Engineering and also a member of the Interdisciplinary Center for Neural Computation at the Hebrew University.

As experimental tools develop, the researchers are looking forward to obtaining access to actual brain measurements on a larger scale. Methods such as the ones they have developed will be applied to help analyze such data and gain even more far-reaching conclusions as to how brain cells process information.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>