Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analytical tool developed by Hebrew University scientists to tackle question of how brain cells work together to react

01.04.2009
An interdisciplinary team of scientists at the Hebrew University of Jerusalem has developed a new analytical tool to answer the question of how our brain cells record outside stimuli and react to them.

Although much progress has been made in understanding the brain in recent decades, scientists still know relatively little about how these processes function. The two key problems in making progress in this field are that there will never be enough real data in terms of measuring what the brain actually does, and even if there were, there haven’t been enough methods for analyzing such data and using them to answer the question of how neural coding actually takes place.

The analytical method developed by the Hebrew University researchers should be able to provide an indication, for example, of how many neurons encode a given stimulus such as reactions to a face or a movement and how they collaborate to do it.

Current technology allows researchers only a very partial view of brain activity. For example, one cannot record the activity of more than a few hundred nerve cells from the cortex of a behaving animal. Methods like MRI imaging can map larger brain areas, but cannot be used to measure single neurons. A key question then remains of what one can learn from such a partial view.

The Hebrew University researchers, headed by Dr. Amir Globerson of the Rachel and Selim Benin School of Computer Science and Engineering, have formulated the novel principle of Minimum Mutual Information (MinMI) to tackle the issue. An article detailing their findings has been published online in the Proceedings of the National Academy of Sciences (PNAS) in the US.

In the article, the researchers provide analyses of both real and simulated data. Their method permits quantification of information in the brain about behavior, given sets of very partial measurements. The key insight to obtaining such results is to consider, via computer simulations, a set of "hypothetical brains" that could have generated the combination of the observed measurements, and then drawing conclusions that are valid for all the brains in this set. Although this seems like a daunting computational task, the researchers have shown that it can be achieved in some cases.

The real data was recorded from monkeys in the laboratory of Prof. Eilon Vaadia, who is the Jack H. Skirball Professor of Brain Research at the Hebrew University- Hadassah Medical School and the Interdisciplinary Center for Neural Computation at the Hebrew University.

The research was carried out as part of Dr. Globerson’s Ph.D. thesis at the Interdisciplinary Center for Neural Computation, and in collaboration with Dr. Eran Stark (who at the time was a graduate student at the Hebrew University- Hadassah Medical School) and with Dr. Globerson’s Ph.D. advisors, Prof. Naftali Tishby and Prof. Vaadia. Prof. Tishby is a professor at the the School of Computer Science and Engineering and also a member of the Interdisciplinary Center for Neural Computation at the Hebrew University.

As experimental tools develop, the researchers are looking forward to obtaining access to actual brain measurements on a larger scale. Methods such as the ones they have developed will be applied to help analyze such data and gain even more far-reaching conclusions as to how brain cells process information.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>