Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of Copernicus putative remains support identity

07.07.2009
Swedish and polish researchers now publish results from the analysis of the putative remains of Copernicus. A DNA-analysis of shed of hairs found in a book from Museum Gustavianum, Uppsala University, was one interesting piece in the project.

The efforts to identify the remains of Nicolaus Copernicus (1473-1543), found under the cathedral in Frombork, was made in a collaborative project between Swedish and Polish scientists in a team consisting of archaeologists, anthropologists and geneticists. The results is published this week in the prestigious journal PNAS (Proceedings of the National Academy of Sciences).

At Uppsala University a DNA analysis was performed of shed hairs found in a book owned by Copernicus for decades, and now kept in Museum Gustavianum at Uppsala University.

"The analysis of several hairs resulted in interpretable profiles for four of the hairs. Of these, two of the hairs have the same profile as the putative remains of Copernicus", says Marie Allen, researcher at Uppsala University.

The Uppsala researchers also made tests of a tooth as well as bone tissue from the putative remains of Copernicus. Results from the analysis of the remains from the Institute of Forensic Research in Krakow and the Museum and institute of zoology in Warsaw and the Uppsala laboratory were identical.

"Although these results points towards the materials being from the same individual, there is a probability of random match", says Marie Allen.

The DNA material in this case was limited and also degraded. Therefore, a so called mitochondrial DNA test was performed, which yields a relatively low evidentiary value. This test is commonly used in criminal investigations, but as circumstantial evidence to strengthen the case.

"The DNA results should be looked at and evaluated in the light of, and together with the information from other disciplines as the archaeological, anthropological and facial reconstruction data", says Marie Allen.

For more information, please contact Marie Allen, +46 708 92 44 44, marie.allen@genpat.uu.se

Johanna Blomqvist | idw
Further information:
http://www.vr.se

Further reports about: Analysis Copernicus DNA DNA analysis mitochondrial DNA test shed of hairs

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>