Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Analysis of Copernicus putative remains support identity

Swedish and polish researchers now publish results from the analysis of the putative remains of Copernicus. A DNA-analysis of shed of hairs found in a book from Museum Gustavianum, Uppsala University, was one interesting piece in the project.

The efforts to identify the remains of Nicolaus Copernicus (1473-1543), found under the cathedral in Frombork, was made in a collaborative project between Swedish and Polish scientists in a team consisting of archaeologists, anthropologists and geneticists. The results is published this week in the prestigious journal PNAS (Proceedings of the National Academy of Sciences).

At Uppsala University a DNA analysis was performed of shed hairs found in a book owned by Copernicus for decades, and now kept in Museum Gustavianum at Uppsala University.

"The analysis of several hairs resulted in interpretable profiles for four of the hairs. Of these, two of the hairs have the same profile as the putative remains of Copernicus", says Marie Allen, researcher at Uppsala University.

The Uppsala researchers also made tests of a tooth as well as bone tissue from the putative remains of Copernicus. Results from the analysis of the remains from the Institute of Forensic Research in Krakow and the Museum and institute of zoology in Warsaw and the Uppsala laboratory were identical.

"Although these results points towards the materials being from the same individual, there is a probability of random match", says Marie Allen.

The DNA material in this case was limited and also degraded. Therefore, a so called mitochondrial DNA test was performed, which yields a relatively low evidentiary value. This test is commonly used in criminal investigations, but as circumstantial evidence to strengthen the case.

"The DNA results should be looked at and evaluated in the light of, and together with the information from other disciplines as the archaeological, anthropological and facial reconstruction data", says Marie Allen.

For more information, please contact Marie Allen, +46 708 92 44 44,

Johanna Blomqvist | idw
Further information:

Further reports about: Analysis Copernicus DNA DNA analysis mitochondrial DNA test shed of hairs

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>