Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amplifying our vision of the infinitely small

02.12.2013
Richard Martel and his research team at the Department of Chemistry of the Université de Montréal have discovered a method to improve detection of the infinitely small. Their discovery is presented in the November 24 online edition of the journal Nature Photonics.

“Raman scattering provides information on the ways molecules vibrate, which is equivalent to taking their fingerprint. It’s a bit like a bar code,” said the internationally renowned professor. “Raman signals are specific for each molecule and thus useful in identifying these molecules.”


Richard Martel and his research team at the Department of Chemistry of the Université de Montréal have discovered a method to improve detection of the infinitely small. Their discovery is presented in the November 24 online edition of the journal Nature Photonics. Credit: Universite de Montreal

Applications of the discovery: retail, banks, hospitals, etc.

The discovery by Martel’s team is that Raman scattering of dye-nanotube particles is so large that a single particle of this type can be located and identified. All one needs is an optical scanner capable of detecting this particle, much like a fingerprint.

“By incorporating these nanoparticles in an object, you can make it perfectly traceable,” he said. Due to their unique structure, carbon nanotubes, which are electrically conductive, can be used as containers for various molecules. Coupled with a dye, these nanoprobes can increase the complexity and strength of the received signal.

Nanoprobes, which are composed of around one hundred dye molecules aligned inside a cylinder, are 50,000 times smaller than a human hair. They are about one nanometre (nm) in diameter and 500 nm long, yet they send a Raman signal one million times stronger than the other molecules in the surrounding.

According to Professor Martel, the applications from this discovery are numerous. In medicine, nanoprobes could lead to improved diagnostics and better treatment by adhering to the surface of diseased cells. These specifically modified nanoprobes could, in effect, be grafted to bacteria or even proteins, allowing them to be easily identified.

One could also imagine custom officers scanning our passports with Raman multispectral mode (i.e., involving several signals). Nanoprobes could also be used in banknote ink, making counterfeiting virtually impossible.

The beauty of it, said Martel, is that the phenomenon is generalized, and many types of dyes can be used to make nanoprobes or tags, whose “bar codes” are all different. “So far, more than 10 different tags have been made, and it seems the sky’s the limit,” he said. “We could, in theory, create as many of these tags as there are bacteria and use this principle to identify them with a microscope operating in Raman mode.”

The story of Raman signals

Raman scattering mode is an optical phenomenon discovered in 1928 by the physicist Chandrasekhara Venkata Raman. The effect involves the inelastic scattering of photons, i.e. the physical phenomenon by which a medium can modify the frequency of the light impinging on it. The difference corresponds to an exchange of energy (wavelength) between the light beam and the medium. In this way, scattered light does not have the same wavelength as incidental light. The technique has become widely used since the advent of the laser in the industry and for research .

But until now, molecular Raman signals have been too weak to serve the needs of optical imaging effectively. So researchers have used other more sensitive techniques but which are less specific because they have no “bar code.” “It is technically possible, however, to enhance the Raman signals of molecules using rough metallic surfaces,” said Martel. “But their sizes limit the applications of Raman spectroscopy and imaging.”

By aligning dye molecules encapsulated in carbon nanotubes, the researchers were able to amplify the Raman signals of these molecules, which until now have not been strong enough to detect. The article presents experimental evidence of extraordinary scattering of visible light on a nanoparticle.

Besides Richard Martel, E. Gaufrès, N. Y. Wa Tang, F. Lapointe, J. Cabana, M. A. Nadon, N. Cottenye, F. Raymond, all of the Université de Montréal, and T. Szkopek, University McGill, contributed to this discovery.

Full bibliographic informationGiant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging
E. Gaufrès,
N. Y.-Wa Tang,
F. Lapointe,
J. Cabana,
M.-A. Nadon,
N. Cottenye,
F. Raymond,
T. Szkopek
& R. Martel
Nature Photonics (2013)
doi:10.1038/nphoton.2013.309
http://www.nature.com/nphoton/journal/vaop/ncurrent/abs/nphoton.2013.309.html

William Raillant-Clark | alfa
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>