Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

By amplifying cell death signals, scientists make precancerous cells self-destruct

19.08.2008
When a cell begins to multiply in a dangerously abnormal way, a series of death signals trigger it to self-destruct before it turns cancerous.

Now, in research to appear in the August 15 issue of Genes & Development, Rockefeller University scientists have figured out a way in mice to amplify the signals that tell these precancerous cells to die. The trick: Inactivating a protein that normally helps cells to avoid self-destruction.

The work, led by Hermann Steller, Strang Professor and head of the Laboratory of Apoptosis and Cancer Biology, is the first to reveal the mechanism by which a class of proteins called IAPs regulates cell death. By exposing the mechanism in a living animal, the finding also marks a breakthrough in the field and opens the door for developing a new class of drugs that could aid in cancer therapy and prevention.

“In a way, these mice are guiding clinical trials,” says Steller, who is also a Howard Hughes Medical Institute investigator. “We now can study how IAPs contribute to the development of cancer in a living animal and develop drugs to prevent or thwart the disease.”

IAP stands for “inhibitor of apoptosis protein,” and these proteins do exactly what their name implies. By inhibiting apoptosis, or programmed cell death, they keep cells alive by directly binding to executioner enzymes called caspases. But until now, precisely how IAPs save cells from death has remained unclear.

With graduate student Andrew Schile and postdoc Maria Garcia-Fernandez, Steller studied the X-linked inhibitor of apoptosis protein, or XIAP, and the role of its largely ignored RING domain, which has been implicated in promoting cell death as well as survival. Steller, Schile and Garcia-Fernandez found that genetically targeting and removing RING affected only some cell types in healthy mice. And even though the mice without the RING had more cell death than the mice with the RING, both lived normal lives under normal laboratory conditions.

But when the scientists compared mice that were genetically predisposed to developing cancer, they found that those without the RING lived twice as long as those with it.

“Cancer cells thrive by disabling the molecular machinery that tells sick cells to die,” says Steller. “By removing the RING, we wanted to see whether we would trick the machinery to turn back on. And that’s what happened. Cells die more readily, making it much more difficult for cancer to be established.”

Steller and his team specifically showed that the RING transfers molecular tags on caspases that label these enzymes for destruction. The more tags, the stronger the signal to save the cell from death. However, when the RING is removed, fewer molecular tags are transferred to caspases and often, the signal to save the cell from death is not strong enough. So, more cells die.

The game is not over. Several distinct IAP genes are known to exist, but which ones are important in the development of cancer has also stymied researchers. “We need to use genetics to sort out which individual IAPs contribute to tumors and which IAPS we need to target in order to cure cancer,” says Steller. “This was a very big step in understanding what role IAPs play in cancer, but it isn’t the last.”

Thania Benios | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>