Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amphibian Froth

06.10.2008
Unusual linkage pattern in a blue protein found in the foam nests of tropical frogs

An unusual blue protein called ranasmurfin and found in the foam nests of a Malaysian tree frog has aroused the interest of a team of British, Brazilian, and Malaysian researchers led by Alan Cooper at the University of Glasgow and James H. Naismith at the University of St Andrews. The colored portion of the protein contains a previously unknown type of zinc-coordinated linkage between its subunits.

Many tropical frogs protect their sensitive eggs and embryos with a foam. When mating, the female excretes a protein-rich fluid that she, together with the male, whips into a sticky foam nest that is then stuck to a structure or plant overhanging a body of water. These tiny ecosystems contain an entire spectrum of previously unknown proteins and other macromolecules; they stabilize the foam, hold it firmly to its substrate, protect it from microbes and predators, prevent dehydration, and provide an ideal environment for the embryos.

The dark greenish-blue color of the nests of the Malaysian tree frog stems from ranasmurfin. Each monomer of this dimeric protein consists of 113 amino acids that are folded into a novel helical motif and stabilized through a series of cross-linkages, which includes an unusual lysine–tyrosine–quinone linkage. Even more unusual is the linkage between the two monomers, in which two lysine–tyrosine–quinone linkages are bridged by a nitrogen atom. This previously unknown type of linkage forms, together with two histidine groups, the binding site for a zinc ion. With its four ligands, the metal ion is thus in a tetrahedral environment. This structure is the unit responsible for the color (chromophore) of the protein.

Currently, the biological function of ranasmurfin can only be speculated. The scientists believe that this protein, which is present in relatively large amounts in the foam, is involved in the stabilization and adhesion of the foam. Proteins with similar linkages seem to play a role in the stabilization of adhesives and cements from mussels. Blue proteins are rare in nature and the chromophore in ranasmurfin has little in common with other blue-green proteins. The blue color could play a role in camouflaging the nests or protection from the sun.

Biological foams are an interesting source of novel proteins. Unusual variations, such as the linkages in the ranasmurfin chromophore, are often posttranslational, meaning they occur after translation of the genetic code into an amino acid chain, and are thus not predictable by the analysis of DNA sequences alone.

Author: Alan Cooper, University of Glasgow (UK), http://www.chem.gla.ac.uk/staff/alanc/

Title: Unusual Chromophore and Cross-Links in Ranasmurfin: A Blue Protein from the Foam Nests of a Tropical Frog

Angewandte Chemie International Edition 2008, 47, No. 41, 7853–7856, doi: 10.1002/anie.200802901

Alan Cooper | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chem.gla.ac.uk/staff/alanc/

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>