Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amphibian Froth

06.10.2008
Unusual linkage pattern in a blue protein found in the foam nests of tropical frogs

An unusual blue protein called ranasmurfin and found in the foam nests of a Malaysian tree frog has aroused the interest of a team of British, Brazilian, and Malaysian researchers led by Alan Cooper at the University of Glasgow and James H. Naismith at the University of St Andrews. The colored portion of the protein contains a previously unknown type of zinc-coordinated linkage between its subunits.

Many tropical frogs protect their sensitive eggs and embryos with a foam. When mating, the female excretes a protein-rich fluid that she, together with the male, whips into a sticky foam nest that is then stuck to a structure or plant overhanging a body of water. These tiny ecosystems contain an entire spectrum of previously unknown proteins and other macromolecules; they stabilize the foam, hold it firmly to its substrate, protect it from microbes and predators, prevent dehydration, and provide an ideal environment for the embryos.

The dark greenish-blue color of the nests of the Malaysian tree frog stems from ranasmurfin. Each monomer of this dimeric protein consists of 113 amino acids that are folded into a novel helical motif and stabilized through a series of cross-linkages, which includes an unusual lysine–tyrosine–quinone linkage. Even more unusual is the linkage between the two monomers, in which two lysine–tyrosine–quinone linkages are bridged by a nitrogen atom. This previously unknown type of linkage forms, together with two histidine groups, the binding site for a zinc ion. With its four ligands, the metal ion is thus in a tetrahedral environment. This structure is the unit responsible for the color (chromophore) of the protein.

Currently, the biological function of ranasmurfin can only be speculated. The scientists believe that this protein, which is present in relatively large amounts in the foam, is involved in the stabilization and adhesion of the foam. Proteins with similar linkages seem to play a role in the stabilization of adhesives and cements from mussels. Blue proteins are rare in nature and the chromophore in ranasmurfin has little in common with other blue-green proteins. The blue color could play a role in camouflaging the nests or protection from the sun.

Biological foams are an interesting source of novel proteins. Unusual variations, such as the linkages in the ranasmurfin chromophore, are often posttranslational, meaning they occur after translation of the genetic code into an amino acid chain, and are thus not predictable by the analysis of DNA sequences alone.

Author: Alan Cooper, University of Glasgow (UK), http://www.chem.gla.ac.uk/staff/alanc/

Title: Unusual Chromophore and Cross-Links in Ranasmurfin: A Blue Protein from the Foam Nests of a Tropical Frog

Angewandte Chemie International Edition 2008, 47, No. 41, 7853–7856, doi: 10.1002/anie.200802901

Alan Cooper | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chem.gla.ac.uk/staff/alanc/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>