Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amphibian Froth

06.10.2008
Unusual linkage pattern in a blue protein found in the foam nests of tropical frogs

An unusual blue protein called ranasmurfin and found in the foam nests of a Malaysian tree frog has aroused the interest of a team of British, Brazilian, and Malaysian researchers led by Alan Cooper at the University of Glasgow and James H. Naismith at the University of St Andrews. The colored portion of the protein contains a previously unknown type of zinc-coordinated linkage between its subunits.

Many tropical frogs protect their sensitive eggs and embryos with a foam. When mating, the female excretes a protein-rich fluid that she, together with the male, whips into a sticky foam nest that is then stuck to a structure or plant overhanging a body of water. These tiny ecosystems contain an entire spectrum of previously unknown proteins and other macromolecules; they stabilize the foam, hold it firmly to its substrate, protect it from microbes and predators, prevent dehydration, and provide an ideal environment for the embryos.

The dark greenish-blue color of the nests of the Malaysian tree frog stems from ranasmurfin. Each monomer of this dimeric protein consists of 113 amino acids that are folded into a novel helical motif and stabilized through a series of cross-linkages, which includes an unusual lysine–tyrosine–quinone linkage. Even more unusual is the linkage between the two monomers, in which two lysine–tyrosine–quinone linkages are bridged by a nitrogen atom. This previously unknown type of linkage forms, together with two histidine groups, the binding site for a zinc ion. With its four ligands, the metal ion is thus in a tetrahedral environment. This structure is the unit responsible for the color (chromophore) of the protein.

Currently, the biological function of ranasmurfin can only be speculated. The scientists believe that this protein, which is present in relatively large amounts in the foam, is involved in the stabilization and adhesion of the foam. Proteins with similar linkages seem to play a role in the stabilization of adhesives and cements from mussels. Blue proteins are rare in nature and the chromophore in ranasmurfin has little in common with other blue-green proteins. The blue color could play a role in camouflaging the nests or protection from the sun.

Biological foams are an interesting source of novel proteins. Unusual variations, such as the linkages in the ranasmurfin chromophore, are often posttranslational, meaning they occur after translation of the genetic code into an amino acid chain, and are thus not predictable by the analysis of DNA sequences alone.

Author: Alan Cooper, University of Glasgow (UK), http://www.chem.gla.ac.uk/staff/alanc/

Title: Unusual Chromophore and Cross-Links in Ranasmurfin: A Blue Protein from the Foam Nests of a Tropical Frog

Angewandte Chemie International Edition 2008, 47, No. 41, 7853–7856, doi: 10.1002/anie.200802901

Alan Cooper | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chem.gla.ac.uk/staff/alanc/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>