Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Amniotic fluid stem cells repair gut damage

Stem cells taken from amniotic fluid were used to restore gut structure and function following intestinal damage in rodents, in new research published in the journal Gut. The findings pave the way for a new form of cell therapy to reverse serious damage from inflammation in the intestines of babies.

The study, funded by Great Ormond Street Hospital Children's Charity, investigated a new way to treat necrotizing enterocolitis (NEC), where severe inflammation destroys tissues in the gut. NEC is the most common gastrointestinal surgical emergency in newborn babies, with mortality rates of around 15 to 30 per cent in the UK.

While breast milk and probiotics can help to reduce the incidence of the disease, no medical treatments are currently available other than surgery once NEC sets in. Surgical removal of the dead tissue shortens the bowel and can lead to intestinal failure, with some babies eventually needing ongoing parenteral nutrition (feeding via an intravenous line) or an intestinal transplant.

In the study, led by the UCL Institute of Child Health, amniotic fluid stem (AFS) cells were harvested from rodent amniotic fluid and given to rats with NEC. Other rats with the same condition were given bone marrow stem cells taken from their femurs, or fed as normal with no treatment, to compare the clinical outcomes of different treatments.

NEC-affected rats injected with AFS cells showed significantly higher survival rates a week after being treated, compared to the other two groups. Inspection of their intestines, including with micro magnetic resonance imaging (MRI), showed the inflammation to be significantly reduced, with fewer dead cells, greater self-renewal of the gut tissue and better overall intestinal function.

While bone marrow stem cells have been known to help reverse colonic damage in irritable bowel disease by regenerating tissue, the beneficial effects from stem cell therapy in NEC appear to work via a different mechanism. Following their injection into the gut, the AFS cells moved into the intestinal villi - the small, finger-like projections that protrude from the lining of the intestinal wall and pass nutrients from the intestine into the blood. However, rather than directly repairing the damaged tissue, the AFS cells appear to have released specific growth factors that acted on progenitor cells in the gut which in turn, reduced the inflammation and triggered the formation of new villi and other tissues.

Dr Paolo De Coppi, UCL Institute of Child Health, who led the study, says: "Stem cells are well known to have anti-inflammatory effects, but this is the first time we have shown that amniotic fluid stem cells can repair damage in the intestines. In the future, we hope that stem cells found in amniotic fluid will be used more widely in therapies and in research, particularly for the treatment of congenital malformations. Although amniotic fluid stem cells have a more limited capacity to develop into different cell types than those from the embryo, they nevertheless show promise for many parts of the body including the liver, muscle and nervous system."

Dr Simon Eaton, UCL Institute of Child Health and co-author of the study, adds: "Once we have a better understanding of the mechanisms by which AFS cells trigger repair and restore function in the gut, we can start to explore new cellular or pharmacological therapies for infants with necrotizing enterocolitis."

Notes to editors

For further information, please contact Jenny Gimpel at the GOSH-ICH press office on + 44 (0)20 7239 3043 or

'Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in NEC via a COX-2 dependent mechanism' by Zani et al, is published on Monday 25 March 2013 in the journal Gut. To obtain a copy of the paper, please contact Jenny Gimpel at the GOSH-ICH press office.

The study was funded by Great Ormond Street Hospital Children's Charity, with support from the Fondazione Citta della Speranza.

Jenny Gimpel | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>