Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Amniotic Fluid May Provide New Source of Stem Cells for Future Therapies

For the first time, scientists have shown that amniotic fluid (the protective liquid surrounding an embryo) may be a potential new source of hematopoietic stem cells for therapeutic applications. The study was prepublished online on February 12, 2009, in Blood, the official journal of the American Society of Hematology.

“Building on observations made by other scientists, our research team wondered whether hematopoietic stem cells could be detected in amniotic fluid.

We looked at the capacity of these cells to form new blood cells both inside and outside the body, and also compared their characteristics to other well-known sources of stem cells,” said senior study author Marina Cavazzana-Calvo, MD, PhD, of INSERM, the national French institute for health and biomedical research. Isabelle André-Schmutz, PhD, of INSERM, also a senior author of the study, added, “The answer was a resounding ‘yes’ – the cells we isolated from the amniotic fluid are a new source of stem cells that may potentially be used to treat a variety of human diseases.”

To conduct the study, amniotic fluid was collected from pregnant mice between 9.5 and 19.5 days post-coitus. Human amniotic fluid was collected during routine diagnostic procedures (amniocentesis) from volunteer donors between seven and 35 weeks of pregnancy.

Amniotic fluid (AF) cells that had markers similar to bone marrow stem cells (termed AFKL cells) were then isolated for use in experiments, as these cell markers were indicative of progenitor cells (cells that have the capacity to differentiate into other types of cells).

In vitro, AFKL cells from both mice and humans were able to generate all blood cell lineages, including red (erythroid) blood cells and white (myeloid and lymphoid) blood cells in experiments performed outside the animals. But the scientists also wanted to explore the AFKL cells’ hematopoietic (blood-forming) potential in vivo. Therefore, adult mice were irradiated to destroy their capacity to produce blood cells and injected with either AFKL cells or fetal liver cells. Fetal liver was used for comparison as it is the primary source for hematopoietic cells in developing embryos.

The peripheral blood of the transplanted mice was examined every four weeks, and after 16-18 weeks the blood-forming organs (bone marrow, spleen, thymus, and lymph nodes) of the mice were dissected. Transplants using mouse AFKL cells were found to be successful; newly formed white blood cells of all lineages derived from AFKL cells appeared in most of the irradiated mice four weeks after the procedure. As expected, all of these blood cell types were detected in all of the control group mice who received fetal liver cell transplants. Scientists continued to find AFKL-derived cells in the irradiated mice four months later, demonstrating the long-term ability of the transplanted cells to produce new blood cells.

Bone marrow samples from the transplanted mice were also taken and injected in a second set of mice and the peripheral blood of this new group of irradiated mice was analyzed and their hematopoietic organs examined after 10-13 weeks. The secondary transplants with mouse AFKL cells were partially successful with some of the mice engrafting the donor cells. This finding shows that AFKL cells have the ability to self-renew, a key characteristic of stem cells.

Though the human AFKL cells failed to reconstitute the hematopoietic system in irradiated, immunodeficient mice, experiments are currently underway to overcome obstacles that may have led to this failure, such as using a low number of cells for the injection and conducting the transplant in adult mice (engraftment is easier to obtain in newborn mice).

As additional confirmation of the probability that AFKL cells are indeed stem cells, the researchers examined them for the expression of specific genes known to be involved in hematopoietic development. The overall gene expression profile of the AFKL cells was found to resemble blood cell progenitors from known hematopoiesis sites such as the aorta-gonadmesonephros region, placenta, and the umbilical/vitelline arteries.

Reporters who wish to receive a copy of the study or arrange an interview with senior authors Drs. Cavazzana-Calvo and André-Schmutz, may contact Patrick C. Irelan at 202-776-0544 or

The American Society of Hematology ( is the world’s largest professional society concerned with the causes and treatment of blood disorders. Its mission is to further the understanding, diagnosis, treatment, and prevention of disorders affecting blood, bone marrow, and the immunologic, hemostatic, and vascular systems, by promoting research, clinical care, education, training, and advocacy in hematology. In September 2008, ASH launched Blood: The Vital Connection (, a credible online resource addressing bleeding and clotting disorders, anemia, and cancer. It provides hematologist-approved information about these common blood conditions including risk factors, preventive measures, and treatment options.

Blood, the official journal of ASH, is the most cited peer-reviewed publication in the field. Blood is issued to Society members and other subscribers weekly and is available in print and online at

Patrick C. Irelan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>