Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amazing skin gives sharks a push

09.02.2012
Speedo Fastskin FS II fabric surface doesn't improve swimming speed

Streamlined sharks are legendary for their effortless swimming. George Lauder from Harvard University, USA, explains that the fish have long inspired human engineers, but more recently attention has focused on how the fish's remarkable skin boosts swimming.

Coated in razor sharp tooth-like scales, called denticles, the skin is thought to behave like the dimples on a golf ball, disturbing the flow of water over the surface to reduce the drag. But something didn't quite sit right with Lauder. 'All of the shark skin studies were done on flat shark skin mimics that were held straight and immovable. But shark skin moves', recalls Lauder.

So, when Masters student Johannes Oeffner joined his lab, Lauder suggested that they take a look at the fluid dynamics of shark skin and its analogues to find out how the fish's motion affects fluid flowing over the rough surface. The duo publishes its discovery that shark skin actually generates thrust to give the fish an additional boost in The Journal of Experimental Biology at http://jeb.biologists.org/.

But first the scientists had to get hold of some fresh shark skin, so they went to a market in Boston where they found several large makos. Back in the lab, Oeffner carefully removed sections from a mako's skin and attached them to both sides of a rigid aluminium foil. Then he immersed the foil in a flow tank, reproduced the swimming motion of a fish by wiggling it from side to side and measured the rigid 'swimming' foil's speed by matching it with the flow of water moving in the opposite direction.

Having measured the foil's swimming speeds with intact skin – compete with denticles – Oeffner carefully sanded off the denticles and set the foil swimming again. However, instead of slowing down – as the duo had expected – the denticle-free foil speeded up. So the shark skin's denticle surface impeded the rigid swimmer. 'But then we remembered our premise that the sharks aren't rigid', remembers Lauder, so how would the shark skin perform when flexing like a real fish?

Gluing two pieces of shark skin together to produce a flexible foil, Oeffner repeated the swimming experiment, and this time the denticles had a dramatic effect. The intact skin foil swam 12.3% faster than the sanded skin. The shark's rough surface improved the swimming performance spectacularly.

However, when the duo tested the swimming performance of two shark skin mimics – a sharp-edged riblet design and the famous Speedo® Fastskin® FS II fabric – they were in for a shock. Although the riblet surface improved the flexible foil's swimming speed by 7.2%, the dented surface of the Speedo® fabric had no effect at all. However, Lauder points out that figure-hugging Fastskin® swimming costumes probably enhance the swimmer's performance in other ways.

After proving that the denticles on shark skin significantly improve the fish's propulsion, Lauder and Oeffner were keen to find out how they affect fluid flows around the body. Returning the flexible shark skin foil to the swim tunnel, Oeffner and Lauder captured the water's swirling motion with laser light and realised that in addition to reducing drag, the skin was actively generating thrust.

'That's the number one surprise. It's not just the drag-reducing properties, but the denticles alter the structure of flow near the shark skin in a way that enhances thrust', explains Lauder. He is now keen to design physical models to see how altered denticle arrangements affect fluid flows over the skin and to build a computational model to tease apart the beneficial effects of the skin's thrust and drag reduction.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://www.jeb.biologists.org

REFERENCE: Oeffner, J. and Lauder, G. V. (2012). The hydrodynamic function of shark skin and two biomimetic applications. J. Exp. Biol. 215, 785-795.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to http://www.jeb.biologists.org is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.­biologists.­org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>