Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amaizing: Corn genome decoded

23.11.2009
In recent years, scientists have decoded the DNA of humans and a menagerie of creatures but none with genes as complex as a stalk of corn, the latest genome to be unraveled.

A team of scientists led by The Genome Center at Washington University School of Medicine in St. Louis published the completed corn genome in the Nov. 20 journal Science, an accomplishment that will speed efforts to develop better crop varieties to meet the world's growing demands for food, livestock feed and fuel.

"Seed companies and maize geneticists will pounce on this data to find their favorite genes," says senior author Richard K. Wilson, Ph.D., director of Washington University's Genome Center, who led the multi-institutional sequencing effort. "Now they'll know exactly where those genes are. Having the complete genome in hand will make it easier to breed new varieties of corn that produce higher yields or are more tolerant to extreme heat, drought, or other conditions."

Corn, also known as maize, is the top U.S. crop and the basis of products ranging from breakfast cereal to toothpaste, shoe polish and ethanol. The corn genome is a hodgepodge of some 32,000 genes crammed into just 10 chromosomes. In comparison, humans have 20,000 genes dispersed among 23 chromosomes.

The $29.5 million maize sequencing project began in 2005 and is funded by the National Science Foundation and the U.S. departments of agriculture and energy. The genome was sequenced at Washington University's Genome Center. The overall effort involved more than 150 U.S. scientists with those at the University of Arizona in Tucson, Cold Spring Harbor Laboratory in New York and Iowa State University in Ames playing key roles.

The group sequenced a variety of corn known as B73, developed at Iowa State decades ago. It is known for its high grain yields and has been used extensively in both commercial corn breeding and in research laboratories.

The genetic code of corn consists of 2 billion bases of DNA, the chemical units that are represented by the letters T, C, G and A, making it similar in size to the human genome, which is 2.9 billion letters long.

But that's where much of the similarity ends. The challenge for Wilson and his colleagues was to string together the order of the letters, an immense and daunting task both because of the corn genome's size and its complex genetic arrangements. About 85 percent of the DNA segments are repeated. Jumping genes, or transposons, that move from place to place make up a significant portion of the genome, further complicating sequencing efforts.

A working draft of the maize genome, unveiled by the same group of scientists in 2008, indicated the plant had 50,000-plus genes. But when they placed the many thousands of DNA segments onto chromosomes in the correct order and closed the remaining gaps, the researchers revised the number of genes to 32,000.

"Sequencing the corn genome was like driving down miles and miles of desolate highway with only sporadically placed sign posts," says co-investigator Sandra Clifton, Ph.D., of Washington University. "We had a rudimentary map to guide us, but because of the repetitive nature of the genome, some of the landmarks were erroneous. It took the dedicated efforts of many scientists to identify the correct placement of the genes."

Interestingly, plants often have more than one genome and corn is no exception. The maize genome is composed of two separate genomes melded into one, with four copies of many genes. As corn evolved over many thousands of years, some of the duplicated genes were lost and others were shuffled around. A number of genes took on new functions.

Corn is the third cereal-based crop after rice and sorghum – and the largest plant genome to date – to have its genome sequenced, and scientists will now be able to look for genetic similarities and differences between the crops. "For example, rice grows really well in standing water but corn doesn't," explains co-investigator Robert Fulton, of Washington University. "Now, scientists can compare the two genomes to find variations of corn genes that are more tolerant to wet conditions."

The United States is the world's top corn grower, producing 44 percent of the global crop. In 2009, U.S. farmers are expected to produce nearly 13 billion bushels of corn, according to the U.S. Department of Agriculture.

The corn genome data is freely available to the public at maizesequence.org

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu
http://maizesequence.org

Further reports about: Amaizing Barnes-Jewish Corn DNA DNA segments Genom Iowa Medicine School Science TV maize genome

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>