Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amaizing: Corn genome decoded

23.11.2009
In recent years, scientists have decoded the DNA of humans and a menagerie of creatures but none with genes as complex as a stalk of corn, the latest genome to be unraveled.

A team of scientists led by The Genome Center at Washington University School of Medicine in St. Louis published the completed corn genome in the Nov. 20 journal Science, an accomplishment that will speed efforts to develop better crop varieties to meet the world's growing demands for food, livestock feed and fuel.

"Seed companies and maize geneticists will pounce on this data to find their favorite genes," says senior author Richard K. Wilson, Ph.D., director of Washington University's Genome Center, who led the multi-institutional sequencing effort. "Now they'll know exactly where those genes are. Having the complete genome in hand will make it easier to breed new varieties of corn that produce higher yields or are more tolerant to extreme heat, drought, or other conditions."

Corn, also known as maize, is the top U.S. crop and the basis of products ranging from breakfast cereal to toothpaste, shoe polish and ethanol. The corn genome is a hodgepodge of some 32,000 genes crammed into just 10 chromosomes. In comparison, humans have 20,000 genes dispersed among 23 chromosomes.

The $29.5 million maize sequencing project began in 2005 and is funded by the National Science Foundation and the U.S. departments of agriculture and energy. The genome was sequenced at Washington University's Genome Center. The overall effort involved more than 150 U.S. scientists with those at the University of Arizona in Tucson, Cold Spring Harbor Laboratory in New York and Iowa State University in Ames playing key roles.

The group sequenced a variety of corn known as B73, developed at Iowa State decades ago. It is known for its high grain yields and has been used extensively in both commercial corn breeding and in research laboratories.

The genetic code of corn consists of 2 billion bases of DNA, the chemical units that are represented by the letters T, C, G and A, making it similar in size to the human genome, which is 2.9 billion letters long.

But that's where much of the similarity ends. The challenge for Wilson and his colleagues was to string together the order of the letters, an immense and daunting task both because of the corn genome's size and its complex genetic arrangements. About 85 percent of the DNA segments are repeated. Jumping genes, or transposons, that move from place to place make up a significant portion of the genome, further complicating sequencing efforts.

A working draft of the maize genome, unveiled by the same group of scientists in 2008, indicated the plant had 50,000-plus genes. But when they placed the many thousands of DNA segments onto chromosomes in the correct order and closed the remaining gaps, the researchers revised the number of genes to 32,000.

"Sequencing the corn genome was like driving down miles and miles of desolate highway with only sporadically placed sign posts," says co-investigator Sandra Clifton, Ph.D., of Washington University. "We had a rudimentary map to guide us, but because of the repetitive nature of the genome, some of the landmarks were erroneous. It took the dedicated efforts of many scientists to identify the correct placement of the genes."

Interestingly, plants often have more than one genome and corn is no exception. The maize genome is composed of two separate genomes melded into one, with four copies of many genes. As corn evolved over many thousands of years, some of the duplicated genes were lost and others were shuffled around. A number of genes took on new functions.

Corn is the third cereal-based crop after rice and sorghum – and the largest plant genome to date – to have its genome sequenced, and scientists will now be able to look for genetic similarities and differences between the crops. "For example, rice grows really well in standing water but corn doesn't," explains co-investigator Robert Fulton, of Washington University. "Now, scientists can compare the two genomes to find variations of corn genes that are more tolerant to wet conditions."

The United States is the world's top corn grower, producing 44 percent of the global crop. In 2009, U.S. farmers are expected to produce nearly 13 billion bushels of corn, according to the U.S. Department of Agriculture.

The corn genome data is freely available to the public at maizesequence.org

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu
http://maizesequence.org

Further reports about: Amaizing Barnes-Jewish Corn DNA DNA segments Genom Iowa Medicine School Science TV maize genome

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>