Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's research sheds light on potential treatments for urinary tract infections

27.11.2009
Research into Alzheimer's disease seems an unlikely approach to yield a better way to fight urinary tract infections (UTIs), but that's what scientists at Washington University School of Medicine in St. Louis and elsewhere recently reported.

One element links the disparate areas of research: amyloids, which are fibrous, sticky protein aggregates. Some infectious bacteria use amyloids to attach to host cells and to build biofilms, which are bacterial communities bound together in a film that helps resist antibiotics and immune attacks. Amyloids also form in the nervous system in Alzheimer's disease, Parkinson's disease and many other neurodegenerative disorders.

To probe amyloids' contributions to neurodegenerative diseases, scientists altered potential UTI-fighting compounds originally selected for their ability to block bacteria's ability to make amyloids and form biofilms. But when they brought the compounds back to UTI research after the neurology studies, they found the changes had also unexpectedly made them more effective UTI treatments.

"Thanks to this research, we have evidence for the first time that we may be able to use a single compound to impair both the bacteria's ability to start infections and their ability to defend themselves in biofilms," says senior author Scott J. Hultgren, Ph.D., the Helen L. Stoever Professor of Molecular Microbiology at Washington University.

The findings were reported online in Nature Chemical Biology.

The National Institutes of Health has estimated that over 80 percent of microbial infections are caused by bacteria growing in a biofilm, according to Hultgren. Scientists in Hultgren's laboratory have worked for decades to understand the links between biofilms and UTIs.

"UTIs occur mainly in women and cause around $1.6 billion in medical expenses every year in the United States," says co-lead author Jerome S. Pinkner, laboratory manager for Hultgren. "We think it's likely that women who are troubled by recurrent bouts of UTIs are actually being plagued by a single persistent infection that hides in biofilms to elude treatment."

Co-lead author Matthew R. Chapman, Ph.D., now associate professor of molecular, cellular and developmental biology at the University of Michigan, was a postdoctoral fellow in Hultgren's lab in 2002 when he discovered that the same bacterium that causes most UTIs, Escherichia coli, deliberately makes amyloids. The amyloids go into fibers known as curli that are extruded by the bacteria to strengthen the structures of biofilms.

To treat UTIs, Hultgren's lab has been working with Fredrik Almqvist, Ph.D., a chemist at the University of Umea in Sweden, to develop compounds that block bacteria's ability to make curli, disrupting their ability to make biofilms and leaving them more vulnerable to antibiotics or immune system attacks. Almqvist recently suggested altering a group of the most promising curli-blockers to see if they could also block the processes that form amyloids in Alzheimer's disease.

The alterations worked: In laboratory tests, the new compounds prevented the protein fragment known as amyloid beta from aggregating into amyloid plaques like those found in the brain in Alzheimer's disease. When scientists took the new compounds back to a mouse model of UTIs, though, they received a surprise. The altered compounds were better at reducing the virulence of infections, inhibiting not only curli formation but also the formation of a second type of bacterial fibers, the pili.

"Pili aren't made of amyloids, but they are essential to both biofilms and to the bacteria's ability to initiate an infection," Hultgren says.

Hultgren and colleagues are already developing even more potent infection and amyloid fighters, screening a library of thousands of chemicals similar to the most promising compounds from the study.

Chapman cautions that it's too early to tell which, if any, of the compounds will be helpful in treating neurodegenerative diseases.

"Much neurodegenerative drug development has focused on ways to break up amyloids or prevent them from forming, but because amyloids may also be an important part of normal cellular physiology, we need to identify molecules that will target only the toxic amyloid state," he says.

Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Aberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nature Chemical Biology, published online.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>