Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's disease protein controls movement in mice

24.06.2013
Researchers in Berlin and Munich, Germany and Oxford, United Kingdom, have revealed that a protein well known for its role in Alzheimer's disease controls spindle development in muscle and leads to impaired movement in mice when the protein is absent or treated with inhibitors.

The results, which are published in The EMBO Journal, suggest that drugs under development to target the beta-secretase-1 protein, which may be potential treatments for Alzheimer's disease, might produce unwanted side effects related to defective movement.

Alzheimer's disease is the most common form of dementia found in older adults. The World Health Organization estimates that approximately 18 million people worldwide have Alzheimer's disease. The number of people affected by the disease may increase to 34 million by 2025. Scientists know that the protein beta-secretase-1 or Bace1, a protease enzyme that breaks down proteins into smaller molecules, is involved in Alzheimer's disease.

Bace1 cleaves the amyloid precursor protein and generates the damaging Abeta peptides that accumulate as plaques in the brain leading to disease. Now scientists have revealed in more detail how Bace1 works.

"Our results show that mice that lack Bace1 proteins or are treated with inhibitors of the enzyme have difficulties in coordination and walking and also show reduced muscle strength," remarked Carmen Birchmeier, one of the authors of the paper, Professor at the Max-Delbrück-Center for Molecular Medicine in Berlin, Germany, and an EMBO Member. "In addition, we were able to show that the combined activities of Bace1 and another protein, neuregulin-1 or Nrg1, are needed to sustain the muscle spindles in mice and to maintain motor coordination."

Muscle spindles are sensory organs that are found throughout the muscles of vertebrates. They are able to detect how muscles stretch and convey the perception of body position to the brain. The researchers used genetic analyses, biochemical studies and interference with pharmacological inhibitors to investigate how Bace1 works in mice. "If the signal strength of a specific form of neuregulin-1 known as IgNrg1 is gradually reduced, increasingly severe defects in the formation and maturation of muscle spindles are observed in mice. Furthermore, it appears that Bace1 is required for full IgNrg1 activity. The graded loss of IgNrg1 activity results in the animals having increasing difficulties with movement and coordination," says Cyril Cheret, the first author of the work.

Drug developers are interested in stopping the Bace1 protein in its tracks because it represents a promising route to treat Alzheimer's disease. If the protein were inhibited, it would interfere with the generation of the smaller damaging proteins that accumulate in the brain as amyloid plaques and would therefore provide some level of protection from the effects of the disease. "Our data indicate that one unwanted side effect of the long-term inhibition of Bace1 might be the disruption of muscle spindle formation and impairment of movement. This finding is relevant to scientists looking for ways to develop drugs that target the Bace1 protein and should be considered," says Birchmeier. Several Bace1 inhibitors are currently being tested in phase II and phase III clinical trials for the treatment of Alzheimer's disease.

Bace1 and neuregulin-1 (Nrg1) cooperate to control formation and maintenance of muscle spindles

Cyril Cheret, Michael Willem, Florence R. Fricker, Hagen Wende, Annika Wulf- Goldenberg, Sabina Tahirovic, Klaus-Armin Nave, Paul Saftig, Christian Haass, Alistair N. Garratt, David L. Bennett and Carmen Birchmeier

Read the paper: doi: 10.1038/emboj.2013.146 http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2013146a.html

A Photo can be downloaded from the Internet at: https://www.mdc-berlin.de/39833128/en/news/2013

Further information on The EMBO Journal is available at http://www.nature.com/embo

Media Contacts

Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org
David del Alamo
Editor, The EMBO Journal
Tel: +49 6221 8891 309
david.delalamo@embo.org
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Barry Whyte | EurekAlert!
Further information:
http://www.embo.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>