Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's disease protein controls movement in mice

24.06.2013
Researchers in Berlin and Munich, Germany and Oxford, United Kingdom, have revealed that a protein well known for its role in Alzheimer's disease controls spindle development in muscle and leads to impaired movement in mice when the protein is absent or treated with inhibitors.

The results, which are published in The EMBO Journal, suggest that drugs under development to target the beta-secretase-1 protein, which may be potential treatments for Alzheimer's disease, might produce unwanted side effects related to defective movement.

Alzheimer's disease is the most common form of dementia found in older adults. The World Health Organization estimates that approximately 18 million people worldwide have Alzheimer's disease. The number of people affected by the disease may increase to 34 million by 2025. Scientists know that the protein beta-secretase-1 or Bace1, a protease enzyme that breaks down proteins into smaller molecules, is involved in Alzheimer's disease.

Bace1 cleaves the amyloid precursor protein and generates the damaging Abeta peptides that accumulate as plaques in the brain leading to disease. Now scientists have revealed in more detail how Bace1 works.

"Our results show that mice that lack Bace1 proteins or are treated with inhibitors of the enzyme have difficulties in coordination and walking and also show reduced muscle strength," remarked Carmen Birchmeier, one of the authors of the paper, Professor at the Max-Delbrück-Center for Molecular Medicine in Berlin, Germany, and an EMBO Member. "In addition, we were able to show that the combined activities of Bace1 and another protein, neuregulin-1 or Nrg1, are needed to sustain the muscle spindles in mice and to maintain motor coordination."

Muscle spindles are sensory organs that are found throughout the muscles of vertebrates. They are able to detect how muscles stretch and convey the perception of body position to the brain. The researchers used genetic analyses, biochemical studies and interference with pharmacological inhibitors to investigate how Bace1 works in mice. "If the signal strength of a specific form of neuregulin-1 known as IgNrg1 is gradually reduced, increasingly severe defects in the formation and maturation of muscle spindles are observed in mice. Furthermore, it appears that Bace1 is required for full IgNrg1 activity. The graded loss of IgNrg1 activity results in the animals having increasing difficulties with movement and coordination," says Cyril Cheret, the first author of the work.

Drug developers are interested in stopping the Bace1 protein in its tracks because it represents a promising route to treat Alzheimer's disease. If the protein were inhibited, it would interfere with the generation of the smaller damaging proteins that accumulate in the brain as amyloid plaques and would therefore provide some level of protection from the effects of the disease. "Our data indicate that one unwanted side effect of the long-term inhibition of Bace1 might be the disruption of muscle spindle formation and impairment of movement. This finding is relevant to scientists looking for ways to develop drugs that target the Bace1 protein and should be considered," says Birchmeier. Several Bace1 inhibitors are currently being tested in phase II and phase III clinical trials for the treatment of Alzheimer's disease.

Bace1 and neuregulin-1 (Nrg1) cooperate to control formation and maintenance of muscle spindles

Cyril Cheret, Michael Willem, Florence R. Fricker, Hagen Wende, Annika Wulf- Goldenberg, Sabina Tahirovic, Klaus-Armin Nave, Paul Saftig, Christian Haass, Alistair N. Garratt, David L. Bennett and Carmen Birchmeier

Read the paper: doi: 10.1038/emboj.2013.146 http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2013146a.html

A Photo can be downloaded from the Internet at: https://www.mdc-berlin.de/39833128/en/news/2013

Further information on The EMBO Journal is available at http://www.nature.com/embo

Media Contacts

Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org
David del Alamo
Editor, The EMBO Journal
Tel: +49 6221 8891 309
david.delalamo@embo.org
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Barry Whyte | EurekAlert!
Further information:
http://www.embo.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>