Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Alzheimer's Disease Neuroimaging Initiative announces completion of genome-wide analysis

Researchers announced today that a high-density genome wide analysis of participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI; is more than 95% complete and that data will be shared with scientists around the world for further analysis.

The ADNI data will be used by researchers to search for genes that contribute to the development of Alzheimer's disease, which currently affects up to 5 million people in the United States alone.

ADNI, an ongoing $60 million project, is a public-private partnership supported primarily by the National Institutes of Health (NIH) with pharmaceutical and related industries and not-for-profit organizations providing support through the Foundation for the National Institutes of Health (FNIH). One of the largest scale neuroimaging projects ever undertaken, ADNI involves longitudinal magnetic resonance imaging (MRI) and positron emission tomography (PET) brain imaging and blood, urine and spinal fluid biomarker studies of more than 800 individuals, half of whom have mild cognitive impairment, a condition placing them at high risk for developing Alzheimer's disease or another dementia.

The primary goal of ADNI is to determine whether brain imaging, other biological markers, and clinical and neuropsychological assessment can accurately measure the progression of mild cognitive impairment and early Alzheimer's disease. The identification of specific biomarkers of early Alzheimer's disease and disease progression will provide a useful tool for researchers and clinicians in both the diagnosis of early Alzheimer's disease and in the development, assessment and monitoring of new treatments.

One major Alzheimer's disease risk gene, APOE, has been consistently shown to be associated with the form of the disease arising later in life that accounts for approximately 95 percent of all cases. It is widely suspected that variants in an ensemble of other genes play a role in susceptibility to the disease and may influence the age of onset, expression and rate of progression of neurodegenerative changes in the brain.

"This new data set provides a unique opportunity to evaluate the associations between a highly comprehensive dataset based on brain imaging, clinical examinations and other biomarkers and the entire genome or selected candidate genes," said Andrew Saykin, Psy.D., director of the IU Center for Neuroimaging at the Indiana University School of Medicine, who leads the genetics research team.

"Where most prior research focused on the association between genetic variations and the presence or absence of Alzheimer's disease, the new project and data should facilitate novel gene discovery based on associations with neuroimaging patterns detected in the ADNI data," Dr. Saykin said.

For example, "this data set can be analyzed to indentify unanticipated genes associated with hippocampal atrophy, a characteristic of Alzheimer's disease," said Steven Potkin, M.D, director of the Brain Imaging Center of the University of California, Irvine, an investigator involved in the data analysis.

ADNI Principal Investigator Michael Weiner, M.D., director of the Center for the Imaging of Neurodegenerative Diseases at the San Francisco VA Medical Center and professor of radiology, medicine, psychiatry, and neurology at the University of California, San Francisco, said, "The release of this genetics data, in combination with the clinical, cognitive, MRI, PET, and blood/cerebrospinal fluid data already in the ADNI database, will now allow investigators to explore genetic factors related to the rate of progression of Alzheimer's disease. Access to this huge amount of data on a public website, from an ongoing clinical study, is unprecedented."

All data from the ADNI consortium are available to qualified investigators through a web-based database (

"It is critical that data generated by the support of public funds be made available as quickly as possible to the research community," said Neil Buckholtz, Ph.D., chief of the Dementias of Aging Branch at the National Institute on Aging (NIA) at NIH. "ADNI is fast becoming a model for how data can be shared and how it can be done with speed, so that important investigations to provide answers on Alzheimer's disease can be pursued more intensively."

The ADNI genetics study employed the Illumina 610 Quad array with more than 620,000 markers for this investigation. The research team represented a collaborative effort among the Translational Genomics Institute (TGen) of Phoenix (, the National Cell Repository for Alzheimer's Disease (, University of California Irvine Brain Imaging Center (, the IU Center for Neuroimaging ( and the 59 ADNI sites.

Eric B. Schoch | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>