Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's Disease Neuroimaging Initiative announces completion of genome-wide analysis

18.03.2009
Researchers announced today that a high-density genome wide analysis of participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI; www.adni-info.org) is more than 95% complete and that data will be shared with scientists around the world for further analysis.

The ADNI data will be used by researchers to search for genes that contribute to the development of Alzheimer's disease, which currently affects up to 5 million people in the United States alone.

ADNI, an ongoing $60 million project, is a public-private partnership supported primarily by the National Institutes of Health (NIH) with pharmaceutical and related industries and not-for-profit organizations providing support through the Foundation for the National Institutes of Health (FNIH). One of the largest scale neuroimaging projects ever undertaken, ADNI involves longitudinal magnetic resonance imaging (MRI) and positron emission tomography (PET) brain imaging and blood, urine and spinal fluid biomarker studies of more than 800 individuals, half of whom have mild cognitive impairment, a condition placing them at high risk for developing Alzheimer's disease or another dementia.

The primary goal of ADNI is to determine whether brain imaging, other biological markers, and clinical and neuropsychological assessment can accurately measure the progression of mild cognitive impairment and early Alzheimer's disease. The identification of specific biomarkers of early Alzheimer's disease and disease progression will provide a useful tool for researchers and clinicians in both the diagnosis of early Alzheimer's disease and in the development, assessment and monitoring of new treatments.

One major Alzheimer's disease risk gene, APOE, has been consistently shown to be associated with the form of the disease arising later in life that accounts for approximately 95 percent of all cases. It is widely suspected that variants in an ensemble of other genes play a role in susceptibility to the disease and may influence the age of onset, expression and rate of progression of neurodegenerative changes in the brain.

"This new data set provides a unique opportunity to evaluate the associations between a highly comprehensive dataset based on brain imaging, clinical examinations and other biomarkers and the entire genome or selected candidate genes," said Andrew Saykin, Psy.D., director of the IU Center for Neuroimaging at the Indiana University School of Medicine, who leads the genetics research team.

"Where most prior research focused on the association between genetic variations and the presence or absence of Alzheimer's disease, the new project and data should facilitate novel gene discovery based on associations with neuroimaging patterns detected in the ADNI data," Dr. Saykin said.

For example, "this data set can be analyzed to indentify unanticipated genes associated with hippocampal atrophy, a characteristic of Alzheimer's disease," said Steven Potkin, M.D, director of the Brain Imaging Center of the University of California, Irvine, an investigator involved in the data analysis.

ADNI Principal Investigator Michael Weiner, M.D., director of the Center for the Imaging of Neurodegenerative Diseases at the San Francisco VA Medical Center and professor of radiology, medicine, psychiatry, and neurology at the University of California, San Francisco, said, "The release of this genetics data, in combination with the clinical, cognitive, MRI, PET, and blood/cerebrospinal fluid data already in the ADNI database, will now allow investigators to explore genetic factors related to the rate of progression of Alzheimer's disease. Access to this huge amount of data on a public website, from an ongoing clinical study, is unprecedented."

All data from the ADNI consortium are available to qualified investigators through a web-based database (www.loni.ucla.edu/ADNI).

"It is critical that data generated by the support of public funds be made available as quickly as possible to the research community," said Neil Buckholtz, Ph.D., chief of the Dementias of Aging Branch at the National Institute on Aging (NIA) at NIH. "ADNI is fast becoming a model for how data can be shared and how it can be done with speed, so that important investigations to provide answers on Alzheimer's disease can be pursued more intensively."

The ADNI genetics study employed the Illumina 610 Quad array with more than 620,000 markers for this investigation. The research team represented a collaborative effort among the Translational Genomics Institute (TGen) of Phoenix (www.tgen.org), the National Cell Repository for Alzheimer's Disease (ncrad.iu.edu), University of California Irvine Brain Imaging Center (www.bic.uci.edu), the IU Center for Neuroimaging (www.neuroimaging.medicine.iu.edu) and the 59 ADNI sites.

Eric B. Schoch | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>