Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's discovery could bring early diagnosis, treatment closer

27.05.2009
McGill and Lady Davis Institute findings help pinpoint molecular cause of the disease

A discovery made by researchers at McGill University and the affiliated Lady Davis Research Institute for Medical Research at Montreal's Jewish General Hospital offers new hope for the early diagnosis and treatment of Alzheimer's disease.

In a study published in the Journal of Biological Chemistry on May 15, Dr. Hemant Paudel, his PhD student Dong Han and postdoctoral fellows Hamid Qureshi and Yifan Lu, report that the addition of a single phosphate to an amino acid in a key brain protein is a principal cause of Alzheimer's. Identifying this phosphate, one of up to two-dozen such molecules, could make earlier diagnosis of Alzheimer's possible and might, in the longer term, lead to the development of drugs to block its onset.

The crucial protein, called a tau protein, is a normal part of the brain and central nervous system. But in Alzheimer's patients, tau proteins go out of control and form tangles that, along with senile plaques, are the primary cause of the degenerative disease.

Several years ago, it was discovered that tau proteins in normal brains contain only three to four attached phosphates, while abnormal tau in Alzheimer's patients have anywhere from 21 to 25 additional phosphates.

Paudel and his team have discovered that it is the addition of a single phosphate to the Ser202 amino acid within the tau brain protein that is the principal culprit responsible for Alzheimer's.

"The impact of this study is twofold," said Paudel, associate professor at McGill's Dept. of Neurology and Neurosurgery, and Project Director at the Bloomfield Centre for Research in Aging at the Lady Davis. "We can now do brain imaging at the earliest stages of the disease. We don't have to look for many different tau phosphates, just this single phosphate. The possibility of early diagnosis now exists.

"Second, the enzyme which puts this phosphate on the tau can be targeted by drugs, so therapies can be developed. This discovery gives us, for the first time, a clear direction towards the early diagnosis and treatment of Alzheimer's."

Paudel and his students worked for years to exclude the phosphates not directly responsible for causing Alzheimer's symptoms. They finally succeeded by working with FTDP-17, a genetic disease with symptoms similar to Alzheimer's, but transmitted via mutations. By genetically manipulating these mutations, they were able to prove that the phosphate on Ser202 almost single-handedly is responsible for the tau abnormalities that cause both FTDP-17 and Alzheimer's.

The disease leads to severe mental degeneration and almost-inevitable death, and there is no known cure, nor even a reliable technique for early diagnosis. A patient is diagnosed with advanced Alzheimer's in the United States every 70 seconds, and deaths due to the disease have increased by a staggering 47 per cent since 2000. With the Baby Boomer population aging, those numbers are expected to explode even further in coming decades.

There are more than 5.3 million people with Alzheimer's in the United States, and more than 300,000 in Canada. Every one of those patients faces years of increasing mental incapacity followed by almost certain death, with no hope of treatment. The U.S. Alzheimer's Association has called the current situation a "crisis."

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>