Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer's discovery could bring early diagnosis, treatment closer

27.05.2009
McGill and Lady Davis Institute findings help pinpoint molecular cause of the disease

A discovery made by researchers at McGill University and the affiliated Lady Davis Research Institute for Medical Research at Montreal's Jewish General Hospital offers new hope for the early diagnosis and treatment of Alzheimer's disease.

In a study published in the Journal of Biological Chemistry on May 15, Dr. Hemant Paudel, his PhD student Dong Han and postdoctoral fellows Hamid Qureshi and Yifan Lu, report that the addition of a single phosphate to an amino acid in a key brain protein is a principal cause of Alzheimer's. Identifying this phosphate, one of up to two-dozen such molecules, could make earlier diagnosis of Alzheimer's possible and might, in the longer term, lead to the development of drugs to block its onset.

The crucial protein, called a tau protein, is a normal part of the brain and central nervous system. But in Alzheimer's patients, tau proteins go out of control and form tangles that, along with senile plaques, are the primary cause of the degenerative disease.

Several years ago, it was discovered that tau proteins in normal brains contain only three to four attached phosphates, while abnormal tau in Alzheimer's patients have anywhere from 21 to 25 additional phosphates.

Paudel and his team have discovered that it is the addition of a single phosphate to the Ser202 amino acid within the tau brain protein that is the principal culprit responsible for Alzheimer's.

"The impact of this study is twofold," said Paudel, associate professor at McGill's Dept. of Neurology and Neurosurgery, and Project Director at the Bloomfield Centre for Research in Aging at the Lady Davis. "We can now do brain imaging at the earliest stages of the disease. We don't have to look for many different tau phosphates, just this single phosphate. The possibility of early diagnosis now exists.

"Second, the enzyme which puts this phosphate on the tau can be targeted by drugs, so therapies can be developed. This discovery gives us, for the first time, a clear direction towards the early diagnosis and treatment of Alzheimer's."

Paudel and his students worked for years to exclude the phosphates not directly responsible for causing Alzheimer's symptoms. They finally succeeded by working with FTDP-17, a genetic disease with symptoms similar to Alzheimer's, but transmitted via mutations. By genetically manipulating these mutations, they were able to prove that the phosphate on Ser202 almost single-handedly is responsible for the tau abnormalities that cause both FTDP-17 and Alzheimer's.

The disease leads to severe mental degeneration and almost-inevitable death, and there is no known cure, nor even a reliable technique for early diagnosis. A patient is diagnosed with advanced Alzheimer's in the United States every 70 seconds, and deaths due to the disease have increased by a staggering 47 per cent since 2000. With the Baby Boomer population aging, those numbers are expected to explode even further in coming decades.

There are more than 5.3 million people with Alzheimer's in the United States, and more than 300,000 in Canada. Every one of those patients faces years of increasing mental incapacity followed by almost certain death, with no hope of treatment. The U.S. Alzheimer's Association has called the current situation a "crisis."

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>