Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aluminum-Oxide Nanopore Beats Other Materials For DNA Analysis

03.06.2009
Fast and affordable genome sequencing has moved a step closer with a new solid-state nanopore sensor being developed by researchers at the University of Illinois.

The nanopore sensor, made by drilling a tiny hole through a thin film of aluminum oxide, could ultimately prove capable of performing DNA analysis with a single molecule, offering tremendous possibilities for personalized medicine and advanced diagnostics.

“Solid-state nanopore sensors have shown superior chemical, thermal and mechanical stability over their biological counterparts, and can be fabricated using conventional semiconductor processes,” said Rashid Bashir, a Bliss Professor of electrical and computer engineering and bioengineering, and the director of the university’s Micro and Nanotechnology Laboratory.

“The aluminum-oxide nanopore sensors go a step further,” Bashir said, “exhibiting superior mechanical properties, enhanced noise performance and increased lifetime over their silicon-oxide and silicon-nitride counterparts.”

The researchers describe the fabrication and operation of the aluminum-oxide nanopore sensor in a paper accepted for publication in Advanced Materials, and posted on the journal’s Web site.

To make the sensor, the researchers begin by using a technique called atomic layer deposition to produce a very thin film of aluminum oxide on a silicon substrate.

Next, the central portion of the substrate is etched away, leaving the film as a suspended membrane. An electron beam is then used to create a very tiny hole – a nanopore – in the membrane.

The process of making the nanopore resulted in an unexpected bonus, Bashir said. “As the electron beam forms the nanopore, it also heats the surrounding material, forming nanocrystallites around the nanopore. These crystals help to improve the mechanical integrity of the nanopore structure and could potentially improve noise performance as well.”

The nanopore sensors described in the paper had pore diameters ranging in size from 4 to 16 nanometers, and a film thickness of approximately 50 nanometers. Thinner membranes are possible with atomic layer deposition, Bashir said, and would offer higher resolution of the detection.

“Thinner membranes can produce less noise as a molecule travels through the nanopore,” said Bashir, who is also affiliated with the university’s Beckman Institute, the Frederick Seitz Materials Research Laboratory, and the Institute for Genomic Biology. “Ultimately, we’d like to make our membranes as thin as biological membranes, which are about 5 nanometers thick.”

To demonstrate the functionality of the aluminum-oxide nanopores, the researchers performed experiments with pieces of DNA containing approximately 5,000 base pairs. Bashir’s team verified the detection of single molecules, with a signal-to-noise performance comparable to that achieved with other solid-state nanopore technology.

“More work must be done to achieve single base resolution, however,” Bashir said. “Our next step is to detect and measure significantly shorter molecules.”

With Bashir, co-authors of the paper are graduate students Bala Murali Venkatesan (lead author), Brian Dorvel, Sukru Yemenicioglu and Nicholas Watkins, and principal research scientist Ivan Petrov.

Funding was provided by the National Institutes of Health.

| University of Illinois
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/09/0602nanopores.html

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>