Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aluminum-Oxide Nanopore Beats Other Materials For DNA Analysis

03.06.2009
Fast and affordable genome sequencing has moved a step closer with a new solid-state nanopore sensor being developed by researchers at the University of Illinois.

The nanopore sensor, made by drilling a tiny hole through a thin film of aluminum oxide, could ultimately prove capable of performing DNA analysis with a single molecule, offering tremendous possibilities for personalized medicine and advanced diagnostics.

“Solid-state nanopore sensors have shown superior chemical, thermal and mechanical stability over their biological counterparts, and can be fabricated using conventional semiconductor processes,” said Rashid Bashir, a Bliss Professor of electrical and computer engineering and bioengineering, and the director of the university’s Micro and Nanotechnology Laboratory.

“The aluminum-oxide nanopore sensors go a step further,” Bashir said, “exhibiting superior mechanical properties, enhanced noise performance and increased lifetime over their silicon-oxide and silicon-nitride counterparts.”

The researchers describe the fabrication and operation of the aluminum-oxide nanopore sensor in a paper accepted for publication in Advanced Materials, and posted on the journal’s Web site.

To make the sensor, the researchers begin by using a technique called atomic layer deposition to produce a very thin film of aluminum oxide on a silicon substrate.

Next, the central portion of the substrate is etched away, leaving the film as a suspended membrane. An electron beam is then used to create a very tiny hole – a nanopore – in the membrane.

The process of making the nanopore resulted in an unexpected bonus, Bashir said. “As the electron beam forms the nanopore, it also heats the surrounding material, forming nanocrystallites around the nanopore. These crystals help to improve the mechanical integrity of the nanopore structure and could potentially improve noise performance as well.”

The nanopore sensors described in the paper had pore diameters ranging in size from 4 to 16 nanometers, and a film thickness of approximately 50 nanometers. Thinner membranes are possible with atomic layer deposition, Bashir said, and would offer higher resolution of the detection.

“Thinner membranes can produce less noise as a molecule travels through the nanopore,” said Bashir, who is also affiliated with the university’s Beckman Institute, the Frederick Seitz Materials Research Laboratory, and the Institute for Genomic Biology. “Ultimately, we’d like to make our membranes as thin as biological membranes, which are about 5 nanometers thick.”

To demonstrate the functionality of the aluminum-oxide nanopores, the researchers performed experiments with pieces of DNA containing approximately 5,000 base pairs. Bashir’s team verified the detection of single molecules, with a signal-to-noise performance comparable to that achieved with other solid-state nanopore technology.

“More work must be done to achieve single base resolution, however,” Bashir said. “Our next step is to detect and measure significantly shorter molecules.”

With Bashir, co-authors of the paper are graduate students Bala Murali Venkatesan (lead author), Brian Dorvel, Sukru Yemenicioglu and Nicholas Watkins, and principal research scientist Ivan Petrov.

Funding was provided by the National Institutes of Health.

| University of Illinois
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/09/0602nanopores.html

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>