Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternative target for breast cancer drugs

19.07.2013
Scientists have identified higher levels of a receptor protein found on the surface of human breast tumour cells that may serve as a new drug target for the treatment of breast cancer.

The results, which are published today in EMBO Molecular Medicine, show that elevated levels of the protein Ret, which is short for “Rearranged during transfection”, are associated with a lower likelihood of survival for breast cancer patients in the years following surgery to remove tumours and cancerous tissue.

“Our findings suggest that Ret kinase might be an attractive and novel alternative therapeutic target in selected groups of breast cancer patients,” remarked Nancy Hynes, Professor at the Friedrich Miescher Institute for Biomedical Research and the University of Basel, Switzerland. “Initial experiments in mice that serve as model organisms for the study of breast cancer have revealed that specific inhibitors significantly block the spread of cancer and decrease the number of metastatic tumours found in the lungs.”

The scientists examined tumour tissue microarrays of more than 100 breast cancer patients who had undergone surgery to remove their tumours. Antibodies were used to detect the levels of Ret in the samples. In other experiments, four different cancer cell lines were used and injected into mice to study the effects of Ret inhibitors on the progress and spread of the cancer.

“Our findings demonstrate that blocking Ret kinase not only decreases the growth of tumours but also impacts the potential of the cancer to spread throughout the body,” Hynes said.

Targeting receptor tyrosine kinase enzymes with antibodies or small molecular inhibitors is a clinically validated approach for cancer therapy. However, only a subset of patients are eligible for these types of treatments which makes it essential to discover additional inhibitors that could be useful in breast cancer therapy.

Dr. Albana Gattelli was supported by grant KG101234 from Susan G. Komen for the Cure®

Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells

Albana Gattelli, Ivan Nalvarte, Anne Boulay, Tim C. Roloff, Martin Schreiber, Neil Carragher, Kenneth K. Macleod, Michaela Schlederer, Susanne Lienhard, Lukas Kenner, Maria I. Torres-Arzayus and Nancy E. Hynes

Read the paper: http://onlinelibrary.wiley.com/doi/10.1002/emmm.201302625/abstract

doi: 10.1002/emmm.201302625

Further information on EMBO Molecular Medicine is available at www.embomolmed.org

Media Contacts
Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org
Céline Carret
Editor, EMBO Molecular Medicine
Tel: +49 6221 8891 411
celine.carret@embo.org
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to sup-port talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their interna-tional reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in tech-niques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | EMBO
Further information:
http://www.embo.org/news/research-news/research-news-2013/alternative-target-for-breast-cancer-drugs

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>