Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternative target for breast cancer drugs

19.07.2013
Scientists have identified higher levels of a receptor protein found on the surface of human breast tumour cells that may serve as a new drug target for the treatment of breast cancer.

The results, which are published today in EMBO Molecular Medicine, show that elevated levels of the protein Ret, which is short for “Rearranged during transfection”, are associated with a lower likelihood of survival for breast cancer patients in the years following surgery to remove tumours and cancerous tissue.

“Our findings suggest that Ret kinase might be an attractive and novel alternative therapeutic target in selected groups of breast cancer patients,” remarked Nancy Hynes, Professor at the Friedrich Miescher Institute for Biomedical Research and the University of Basel, Switzerland. “Initial experiments in mice that serve as model organisms for the study of breast cancer have revealed that specific inhibitors significantly block the spread of cancer and decrease the number of metastatic tumours found in the lungs.”

The scientists examined tumour tissue microarrays of more than 100 breast cancer patients who had undergone surgery to remove their tumours. Antibodies were used to detect the levels of Ret in the samples. In other experiments, four different cancer cell lines were used and injected into mice to study the effects of Ret inhibitors on the progress and spread of the cancer.

“Our findings demonstrate that blocking Ret kinase not only decreases the growth of tumours but also impacts the potential of the cancer to spread throughout the body,” Hynes said.

Targeting receptor tyrosine kinase enzymes with antibodies or small molecular inhibitors is a clinically validated approach for cancer therapy. However, only a subset of patients are eligible for these types of treatments which makes it essential to discover additional inhibitors that could be useful in breast cancer therapy.

Dr. Albana Gattelli was supported by grant KG101234 from Susan G. Komen for the Cure®

Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells

Albana Gattelli, Ivan Nalvarte, Anne Boulay, Tim C. Roloff, Martin Schreiber, Neil Carragher, Kenneth K. Macleod, Michaela Schlederer, Susanne Lienhard, Lukas Kenner, Maria I. Torres-Arzayus and Nancy E. Hynes

Read the paper: http://onlinelibrary.wiley.com/doi/10.1002/emmm.201302625/abstract

doi: 10.1002/emmm.201302625

Further information on EMBO Molecular Medicine is available at www.embomolmed.org

Media Contacts
Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org
Céline Carret
Editor, EMBO Molecular Medicine
Tel: +49 6221 8891 411
celine.carret@embo.org
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to sup-port talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their interna-tional reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in tech-niques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | EMBO
Further information:
http://www.embo.org/news/research-news/research-news-2013/alternative-target-for-breast-cancer-drugs

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>