Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Altered gene protects some African-Americans from coronary artery disease

A team of scientists at Johns Hopkins and elsewhere has discovered that a single alteration in the genetic code of about a fourth of African-Americans helps protect them from coronary artery disease, the leading cause of death in Americans of all races.

Researchers found that a single DNA variation - having at least one so-called guanine nucleotide in a base pair instead of a combination without any guanine - on a gene already linked to higher risk of coronary disease in other races is linked in blacks to decreased risk. Specifically, the study showed that otherwise healthy African-American men and women with the alternative genetic code had a fivefold reduction in the likelihood that their arteries would narrow or clog.

For African-Americans who inherited two copies of the guanine gene variant, one from each parent, the risk reduction was even more dramatic. They were 10 times less likely to have coronary heart disease, which disproportionately afflicts a greater number of African-Americans than whites or any other ethnic group. Nearly 17 million Americans have an arterial problem plaguing the heart, causing a half-million deaths, annually.

"What we think we have here is the first confirmed hereditary link to cardiovascular disease among African-Americans and it is a protective one," says senior study investigator and health epidemiologist Diane Becker, M.P.H., Sc.D. "This newly found link in African-Americans was not only protective instead of harmful but was also found at a precise location on gene CDKN2B, a gene close to the single base pair modification tied to other increased risk of coronary artery disease in other races."

Becker emphasizes that only an estimated quarter of blacks have the protective CDKN2B code, and only 6 percent have two copies, so "while a lot of African-Americans have this protective genetic modification, most do not." Advance testing for the genetic marker, she says, could ultimately in the future assist physicians in risk-stratifying those without inherited protection so they could be monitored more closely for early signs and symptoms of disease.

The findings are set to appear in the Journal of Human Genetics online Jan. 27.

Becker, a professor at both the Johns Hopkins University School of Medicine and Hopkins' Bloomberg School of Public Health, and a team that included researchers at Duke and Emory universities, also say their results, based on blood analysis from 548 black men and women in the Baltimore region and confirmed in several hundred more in the Atlanta and Durham, N.C., regions, help explain why earlier studies found potentially dangerous genetic connections to this type of heart disease in Caucasians, Hispanics and Asians, but failed to find a negative tie-in to the disease in blacks.

Earlier studies, says Becker, had involved genome-wide reviews in multiracial populations and taken "a needle in the haystack approach" to finding that one change in a string of some 58,000 base pairs, in a chromosomal region known as 9p21. That region, which includes CDKN2B, is associated with higher rates of coronary disease in non-blacks.

The team's latest analysis was successful, she believes, because it had a large and sufficiently broadly based black volunteer population. The study group comprised men and women between the ages of 26 and 60. Investigators also focused on the 9p21 region and a subsection of genetic material within called ANRIL that overlaps and is closely held to CDKN2B, but away from the deleterious genetic variant found earlier.

Johns Hopkins cardiologist Brian Kral, M.D., M.P.H., says the abundance of activity in this particular region of the genome, including CDK2NB and ANRIL, suggests that everyday replication of this zone could play a more fundamental, underlying role in the progression of coronary artery disease in all races.

Kral, an assistant professor at Johns Hopkins and its Heart and Vascular Institute. was co-lead investigator of the latest study, along with Hopkins genetic epidemiologist Rasika Mathias, Sc.D. The team next plans to further investigate the ANRIL subregion of 9p21 to see if any single genetic changes speed up or slow down progression of coronary diseases.

Blood samples for the genetic analysis came from a larger study being led by Becker of some 4,000 people from white and African-American ethnic backgrounds. Called the Genetic Study of Atherosclerosis Risk (GeneSTAR), under way at Johns Hopkins since 1983, it involves participants who were all healthy upon enrollment, with no existing symptoms of heart disease. All were monitored for at least five years with periodic check-ups to see who developed heart disease and who did not. Each had a sibling or a parent who had a history of coronary artery disease or some other symptom of blocked arteries, such as chest pain or shortness of breath. The latest study was based on results collected through 2007, by which time 35 black study participants had suffered some form of heart attack or needed an angioplasty or X-ray scan of the heart's blood vessels to confirm or rule out arterial blockages.

Study funding was provided by the National Heart, Lung and Blood Institute (NHLBI), a member of the National Institutes of Health, and the Johns Hopkins Clinical Research Center.

In addition to Becker, Kral and Mathias, other Hopkins researchers involved in this report are Bhoom Suktitipar, M.D.; Ingo Ruczinski, Ph.D.; Dhananjay "Jay" Vaidya, M.B.B.S., Ph.D.; Lisa Yanek, M.P.H.; and Lewis Becker, M.D. Arshed Quyyumi, M.D.; Riyaz Patel, M.D.; A Maziar Zafari, M.D., Ph.D.; and Viola Vaccarino, M.D., Ph.D., all at Emory University in Atlanta, also contributed to the research. Further study assistance and support was provided from Elizabeth Hauser, Ph.D., and William Kraus, M.D., both at Duke University Medical Center in Durham, N.C.

For additional information, please go to:,%20MD,%20MPH

David March | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>