Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alluring Scents – Insights into the evolution of sex pheromones from a parasitic wasp

14.02.2013
Although it is long known that sex pheromones play an important role in attracting and selecting the right mating partner, we know surprisingly little about the evolution and molecular basis of these alluring scents.
A German-American research team from the Arizona State University (USA), the Zoological Research Museum Alexander Koenig Bonn , the University of Regensburg, and the Technical University Darmstadt used the parasitic wasp genus Nasonia to gain new insights into the process sex pheromone evolution. The result of this long lasting cooperation has now been published in Nature.

Most insects rely on their sense of smell when they seek a mating partner. They often use species specific sex pheromones to attract a suitable partner, i.e. a partner of the same species and different sex. Many sex pheromones are blends of multiple chemical components and the specific mixture/recipe of all components generates a unique and species specific blend. So far researchers assumed that individuals who used a blend that is even slightly different from their species specific blend are at a severe disadvantage compared to individuals who use the “traditional” blend in attracting mating partners.
For that reason theory predicts that the composition of sex pheromones should be extremely stable over long periods of time. Hence, scientists are puzzled by the enormous diversity of sex pheromones found today and struggle to understand how this diversity has evolved. Additionally, so far very little is known about the genetic mechanisms and molecular changes that accompany changes in sex pheromone composition.

To answer both of these questions, what is the genetic basis of sex pheromone differences and how do they evolve, researchers in Germany and USA studied two species of the parasitoid wasp genus Nasonia. Males of these species are only 2-5 mm long and attract females with a sex pheromone produced in their hindgut. The researchers discovered that the sex pheromones of all known Nasonia species are composed of two components. The only exeption is N. vitripennis which uses a novel third component.

The researchers identified the genes responsible for the production of the third pheromone component in N. vitripennis. These genes code for alcohol dehydrogenase enzymes. “These enzymes catalyze the structural reorganization of an already present sex pheromone component resulting in the generation of the third and novel sex pheromone component in N. vitripennis” explained Dr. Oliver Niehuis, director of the Molecular Laboratory of the Zoological Research Museum Alexander Koenig in Bonn. N. vitripennis males could no longer produce the novel and unique sex pheromone component once the researchers knocked down the alcohol dehydrogenase genes via dsRNAi.

Behavioral tests revealed that females of N. vitripennis do not react, if only the new component is offered. So what is the function of the novel component? “Only in combination with the other two (ancestral) components can females of N. vitripennis distinguish between conspecific males and males from sympatrically occurring closely related species” explains Prof. Dr. Joachim Ruther from the University of Regensburg. Females from the closely related and sympatric species Nasonia giraulti do not distinguish between the novel and ancestral sex pheromone with three and two components, respectively. Hence, the researchers concluded that initially females of N. vitripennis didn’t react to the third component when it first evolved. However, at some time in the evolutionary history of N. vitripennis the olfactory system of N. vitripennis adapted to the novel component and it is now an integral and distinguishing feature of the species specific sex pheromone of N. vitripennis males.

This study gives new insights into the evolution of sex pheromones and chemical communication in general. It is one of the first demonstrations how new sex pheromones can evolve by simple modifications of already existing components without losing the efficiency in the information content, i.e. males with the new scent are still attractive for mates used to the old scent.

Link to the original publication:

www: http://www.nature.com
DOI: 10.1038/nature11838

Ansprechpartner für Medienvertreter:

Dr. Oliver Niehuis
Zoologisches Forschungsmuseum Alexander Koenig
Adenauerallee 160
Tel.: 0228 9122-356
Email: o.niehuis.zfmk@uni-bonn.de

Contact in the USA;

Juergen Gadau
Arizona State University
School of Life Sciences
Office: 480-965-2349
e-mail: jgadau@asu.edu

or

Joshua Gibson
Arizona State University
School of Life Sciences
E-mail: jdgibson@asu.edu

Das Zoologische Forschungsmuseum Alexander Koenig (ZFMK) is part of the Leibniz Association, a network of 86 scientifically, legally and economically independent research institutes and scientific service facilities. Leibniz Institutes perform strategic- and thematically-oriented research and offer scientific service of national significance while striving to find scientific solutions for major social challenges.

Sabine Heine | idw
Further information:
http://www.asu.edu
http://www.nature.com

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>