Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allergy treatment may cause new allergy

14.12.2010
Allergic contact dermatitis from aluminium has previously been considered very unusual. However, there are now reports of pruritic nodules and aluminium allergy arising after vaccinations or treatments for allergies. Researcher Eva Netterlid has studied the problem in a thesis recently defended at Lund University in Sweden.

‘Pruritic nodules’ are small lumps under the skin that cause itching and which, according to some studies, can remain for several years. A study of whooping cough vaccinations in Gothenburg a few years ago showed that almost one per cent of the children developed pruritic nodules in the area of the vaccination. Three out of four of the children who had a reaction with nodules also developed an allergy to aluminium.

“This was completely unexpected. Aluminium has been used as an adjuvant, intensifier, in vaccines for over 70 years with only a small number of reports of pruritic nodules and allergic contact dermatitis”, says Eva Netterlid. Her research has been carried out at the Occupational and Environmental Dermatology Unit in Malmö.

There are a number of possible explanations as to why aluminium allergy has become more common. There is new technology for identifying the allergy, the type of aluminium compounds used in vaccines and other treatments may have changed, and the number of vaccinations has increased with the increase in international travel.

Eva Netterlid only found a very small number of pruritic nodules in a study of diphtheria vaccinations of Swedish 10-year-olds. She then went on to study hyposensitisation, a treatment in which gradually higher doses of an allergenic substance are given to patients who are allergic to pollen, mites, etc. to habituate them to the substance.

This treatment also uses aluminium as an intensifier. The follow-up in this case showed a higher number of reactions. Of 37 children treated, allergic contact dermatitis from aluminium was seen in 8 children and pruritic nodules in 13 children. The 24 children with allergies who were included in the study but who were not given the treatment had neither pruritic nodules nor aluminium allergy.

Another study was of hyposensitisation of children and adults with allergic respiratory diseases. It was found that almost four per cent of the subjects had allergic contact dermatitis from aluminium. There were individuals with aluminium allergy in both the treated and the untreated group, and the allergy could therefore not be conclusively linked to the treatment. However, examination of the patients’ arms before and one year after the treatment showed that the number of people with nodules had increased significantly, and the proportion who had pruritic nodules had also increased.

Eva Netterlid and her colleagues hope to be able to continue with their research in the area. One important issue is whether different aluminium compounds produce different outcomes; another is whether those who have had a positive result in the test for aluminium allergy also have clinical symptoms when exposed to drugs and cosmetics containing aluminium.

Eva Netterlid can be contacted by telephone, +46 46 18 85 35, +46 708 988535, or by email, eva.netterlid@med.lu.se.

Pressofficer Ingela Björck; ingela.bjorck@rektor.lu.se; +46-46 222 7646

Ingela Björck | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>