Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allegedly Useless Parts of the Human Genome Fulfil Regulatory Tasks

10.09.2012
Heidelberg scientists contribute to the encyclopedia of all functional DNA elements in the human genome

A surprisingly large part of allegedly useless DNA in the human genome turns out to be responsible for regulating gene activity. This is now shown in a study by the international ENCODE project under participation of biologists from Heidelberg University’s Centre for Organismal Studies (COS).

ENCODE aims to assemble an encyclopedia of all functional DNA elements in the human genome. The Heidelberg scientists were able to confirm in a showcase with the model organism Medaka fish that surprisingly many of the analysed elements in the non-protein-coding part of the DNA can actually regulate gene activity in a very specific way. The results of the ENCODE study are now published in the journal “Nature”, among others.

The human genome contains roughly 20.000 genes, which are the blueprint for all proteins making up the human body – from muscles via liver and eye to nerve cells and their messenger molecules. However, genes coding for proteins constitute only about 3 percent of the human genome. The functions of the remaining 97 percent have long remained unclear. “So far, we have had a limited understanding of the mode of gene regulation, e.g. why a gene is activated at a specific point in time in a specific organ. This could only be studied in single cases and with substantial effort”, explains Joachim Wittbrodt, head of the Department for Animal Physiology and Developmental Biology at the Centre for Organismal Studies Heidelberg.

The ENCODE project aims at characterising the entire human hereditary information in more detail in order to identify functions for the large, non-protein-coding part of the human genome and to place it in context with the regulation of gene activity. One prerequisite was the development of novel methods for large-scale experimental approaches as well as for data handling and analysis. Using biochemical and bioinformatics approaches, it was possible to identify “candidates” of DNA elements that co-determine when and where in the human body a gene is active. The team of Joachim Wittbrodt contributed significantly to the experimental validation of these so-called enhancers.

The Heidelberg scientists have prepared the putative enhancers in a way that they could be used to drive the expression of a reporter in the Medaka fish embryo. The reporter is easily identified in Medaka due to its bright green glow. Thus, the scientists could show that a large part of the analysed DNA elements is actually able to specifically regulate gene activity. “Our validation is of special importance since it was not done in an experimentally isolated system, but in the developing Medaka embryo”, says Dr. Stephanie Schneider of the Centre for Organismal Studies.

The “Encyclopedia of DNA Elements” (ENCODE) project – conducted by 80 research groups across the globe – was financed through grants from the National Human Genome Research Institute in the USA. All data that was generated, collected and analysed within the ENCODE project is publicly available and serves as a valuable resource for future research projects.

Note to news desks:
Digital pictures are available from the Press Office.

Original publication:
Ian Dunham et al.: An integrated encyclopedia of DNA elements in the human genome, Nature 489, 57-74
(06 September 2012), doi:10.1038/nature11247

Contact:
Prof. Dr. Joachim Wittbrodt
Dr. Stephanie Schneider
Centre for Organismal Studies
Phone +49 6221 54-5653, 54-5607
stephanie.schneider@cos.uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-19017
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

Further reports about: Allegedly DNA ENCODE Genom Human vaccine gene activity human body human genome nerve cell regulatory studies

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>