Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allegedly Useless Parts of the Human Genome Fulfil Regulatory Tasks

10.09.2012
Heidelberg scientists contribute to the encyclopedia of all functional DNA elements in the human genome

A surprisingly large part of allegedly useless DNA in the human genome turns out to be responsible for regulating gene activity. This is now shown in a study by the international ENCODE project under participation of biologists from Heidelberg University’s Centre for Organismal Studies (COS).

ENCODE aims to assemble an encyclopedia of all functional DNA elements in the human genome. The Heidelberg scientists were able to confirm in a showcase with the model organism Medaka fish that surprisingly many of the analysed elements in the non-protein-coding part of the DNA can actually regulate gene activity in a very specific way. The results of the ENCODE study are now published in the journal “Nature”, among others.

The human genome contains roughly 20.000 genes, which are the blueprint for all proteins making up the human body – from muscles via liver and eye to nerve cells and their messenger molecules. However, genes coding for proteins constitute only about 3 percent of the human genome. The functions of the remaining 97 percent have long remained unclear. “So far, we have had a limited understanding of the mode of gene regulation, e.g. why a gene is activated at a specific point in time in a specific organ. This could only be studied in single cases and with substantial effort”, explains Joachim Wittbrodt, head of the Department for Animal Physiology and Developmental Biology at the Centre for Organismal Studies Heidelberg.

The ENCODE project aims at characterising the entire human hereditary information in more detail in order to identify functions for the large, non-protein-coding part of the human genome and to place it in context with the regulation of gene activity. One prerequisite was the development of novel methods for large-scale experimental approaches as well as for data handling and analysis. Using biochemical and bioinformatics approaches, it was possible to identify “candidates” of DNA elements that co-determine when and where in the human body a gene is active. The team of Joachim Wittbrodt contributed significantly to the experimental validation of these so-called enhancers.

The Heidelberg scientists have prepared the putative enhancers in a way that they could be used to drive the expression of a reporter in the Medaka fish embryo. The reporter is easily identified in Medaka due to its bright green glow. Thus, the scientists could show that a large part of the analysed DNA elements is actually able to specifically regulate gene activity. “Our validation is of special importance since it was not done in an experimentally isolated system, but in the developing Medaka embryo”, says Dr. Stephanie Schneider of the Centre for Organismal Studies.

The “Encyclopedia of DNA Elements” (ENCODE) project – conducted by 80 research groups across the globe – was financed through grants from the National Human Genome Research Institute in the USA. All data that was generated, collected and analysed within the ENCODE project is publicly available and serves as a valuable resource for future research projects.

Note to news desks:
Digital pictures are available from the Press Office.

Original publication:
Ian Dunham et al.: An integrated encyclopedia of DNA elements in the human genome, Nature 489, 57-74
(06 September 2012), doi:10.1038/nature11247

Contact:
Prof. Dr. Joachim Wittbrodt
Dr. Stephanie Schneider
Centre for Organismal Studies
Phone +49 6221 54-5653, 54-5607
stephanie.schneider@cos.uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-19017
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

Further reports about: Allegedly DNA ENCODE Genom Human vaccine gene activity human body human genome nerve cell regulatory studies

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>