Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allegedly Useless Parts of the Human Genome Fulfil Regulatory Tasks

10.09.2012
Heidelberg scientists contribute to the encyclopedia of all functional DNA elements in the human genome

A surprisingly large part of allegedly useless DNA in the human genome turns out to be responsible for regulating gene activity. This is now shown in a study by the international ENCODE project under participation of biologists from Heidelberg University’s Centre for Organismal Studies (COS).

ENCODE aims to assemble an encyclopedia of all functional DNA elements in the human genome. The Heidelberg scientists were able to confirm in a showcase with the model organism Medaka fish that surprisingly many of the analysed elements in the non-protein-coding part of the DNA can actually regulate gene activity in a very specific way. The results of the ENCODE study are now published in the journal “Nature”, among others.

The human genome contains roughly 20.000 genes, which are the blueprint for all proteins making up the human body – from muscles via liver and eye to nerve cells and their messenger molecules. However, genes coding for proteins constitute only about 3 percent of the human genome. The functions of the remaining 97 percent have long remained unclear. “So far, we have had a limited understanding of the mode of gene regulation, e.g. why a gene is activated at a specific point in time in a specific organ. This could only be studied in single cases and with substantial effort”, explains Joachim Wittbrodt, head of the Department for Animal Physiology and Developmental Biology at the Centre for Organismal Studies Heidelberg.

The ENCODE project aims at characterising the entire human hereditary information in more detail in order to identify functions for the large, non-protein-coding part of the human genome and to place it in context with the regulation of gene activity. One prerequisite was the development of novel methods for large-scale experimental approaches as well as for data handling and analysis. Using biochemical and bioinformatics approaches, it was possible to identify “candidates” of DNA elements that co-determine when and where in the human body a gene is active. The team of Joachim Wittbrodt contributed significantly to the experimental validation of these so-called enhancers.

The Heidelberg scientists have prepared the putative enhancers in a way that they could be used to drive the expression of a reporter in the Medaka fish embryo. The reporter is easily identified in Medaka due to its bright green glow. Thus, the scientists could show that a large part of the analysed DNA elements is actually able to specifically regulate gene activity. “Our validation is of special importance since it was not done in an experimentally isolated system, but in the developing Medaka embryo”, says Dr. Stephanie Schneider of the Centre for Organismal Studies.

The “Encyclopedia of DNA Elements” (ENCODE) project – conducted by 80 research groups across the globe – was financed through grants from the National Human Genome Research Institute in the USA. All data that was generated, collected and analysed within the ENCODE project is publicly available and serves as a valuable resource for future research projects.

Note to news desks:
Digital pictures are available from the Press Office.

Original publication:
Ian Dunham et al.: An integrated encyclopedia of DNA elements in the human genome, Nature 489, 57-74
(06 September 2012), doi:10.1038/nature11247

Contact:
Prof. Dr. Joachim Wittbrodt
Dr. Stephanie Schneider
Centre for Organismal Studies
Phone +49 6221 54-5653, 54-5607
stephanie.schneider@cos.uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-19017
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

Further reports about: Allegedly DNA ENCODE Genom Human vaccine gene activity human body human genome nerve cell regulatory studies

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>