Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae from clogged waterways could serve as biofuels and fertilizer

25.03.2015

Water-borne algal blooms from farm fertilizer runoff can destroy aquatic life and clog rivers and lakes, but scientists will report today that they are working on a way to clean up these environmental scourges and turn them into useful products. The algae could serve as a feedstock for biofuels, and the feedstock leftovers could be recycled back into farm soil nutrients.

A multi-pronged nutrient bio-remediation system is the goal of a team of scientists who will present their research at the 249th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society. The meeting, which takes place here through Thursday, features nearly 11,000 presentations on a wide range of science topics.


Scientists want to turn harmful algal blooms (green, along coastline) into biofuels and fertilizers.

Credit: Jeff Schmaltz, NASA GSFC

"I grew up on a farm, and I know firsthand the needs of small-scale farmers, as well as the problems posed by algal blooms," says John B. Miller, Ph.D. "But I am also a chemist, so I see an upside with algae."

Algae can range in size from a single cell to large seaweeds. They only need water, sunlight and a source of nutrients to grow. But with a boost from high levels of man-made nutrients -- particularly nitrogen and phosphorus from farm runoff -- the growth springs out of control. They form clumps called algal blooms that can be directly toxic to fish and other aquatic life. The blooms also can draw oxygen from the water, creating dead zones, where most life cannot exist.

But Miller and his team at Western Michigan University envision a solution to problematic algal blooms, which can benefit small-scale farmers. Already, algae are gradually but increasingly being used as a feedstock for different classes of biofuels, including ethanol. It grows very quickly -- some two to eight times faster than similar land-based ethanol feedstocks, such as corn, soybeans or cellulosic biomass -- which is an advantage.

Large-scale, centralized "algal turf scrubber" operations in Florida and elsewhere are getting underway and are growing natural communities of periphytic or attached algae for biofuel production. Miller is building on this approach but will downsize it to water bodies near small farms throughout the U.S.

"For small farm applications, the system must be easy to operate, nearly automatic and be suitable for diffuse installations," he says. "So, my focus has been to apply this technology without requiring the large infrastructure of the electric grid, large pumping installations and all the rest that is needed for centralized operations. A farmer won't have time to check an algae collection and processing system, so it has to also be able to operate remotely."

Currently, the team is exploring different substrates to optimize algae growth in water bodies. By using 3-D printing technologies, the researchers engineer substrates to provide different geometric features that foster growth of algal blooms. They are testing these first in the laboratory before analyzing them out in the field. Also, they are investigating different options for collection techniques that will be more appropriate for small, remote locations.

Miller points out that the algae can be used for biofuel feedstock, making a profit for the farmers. And the waste left over after the biofuel's fermentation and distillation steps is high in nutrients and carbohydrates, which is a material that can be recycled back to farm fields for use as an organic fertilizer.

It may take a while to get the system up and running at farms, but Miller says that there is a powerful economic incentive for farmers to sign on. That's because it has the potential to shift problematic algae into biofuels, taking a farm-based ecological problem and turning it into a revenue stream for small-scale farmers, he says.

###

A press conference on this topic will be held Wednesday, March 25, at 9 a.m. Mountain time in the Colorado Convention Center. Reporters may check-in at Room 104 in person, or watch live on YouTube http://bit.ly/ACSLiveDenver. To ask questions, sign in with a Google account.

Miller acknowledges funding from the Department of Energy, the Smithsonian Institution, Western Michigan University and StatoilHydro.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research is being presented at a meeting of the American Chemical Society.

Follow us: Twitter | Facebook

Title

Coupling surface water remediation to sustainable energy: Toward off-grid production of algae for biofuels

Abstract

Excess nutrients from agricultural inputs have been implicated in large algal blooms in the Great Lakes and elsewhere, resulting in degraded water quality with subsequent consequences. Reduction of the nutrient load into large water bodies depends on reduction of nutrient outflows from surrounding drainage basins. Modern farming techniques reduce fertilizer application rates and limit the effects of major erosive events, but even small, adventitious excesses accumulate over an entire watershed. To reduce nutrient loads in surface waters beyond what conservation measures can achieve may require treatment. On a watershed scale, this can be accomplished by treating very large volumes with a few localized facilities, or treating small volumes with many distributed facilities. Nutrient scrubbers based on periphyton communities, so-called algal turfs, have proven to be an effective technique for absorbing nutrients from surface waters in several locations. The turf can be easily harvested, and the lignin-free carbohydrates in the turf used to produce fermented biofuels. The residual material left after fuel production contains the bulk of the nutrients absorbed by the algal turf, and is an effective fertilizer. This work examines the links between nutrient capture and bio-energy production using algal turfs, focusing on methods that are appropriate for distributed, small-scale installations. Particular attention is paid to concerns for remote or unattended operation in locations without access to a power grid.

Michael Bernstein | EurekAlert!

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>