Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Algae biofuels: the wave of the future

Researchers at Virginia Bioinformatics Institute have assembled the draft genome of a marine algae sequence to aid scientists across the US in a project that aims to discover the best algae species for producing biodiesel fuel. The results have been published in Nature Communications.
The necessity of developing alternative, renewable fuel sources to prevent a potential energy crisis and alleviate greenhouse gas production has long been recognized. Various sources have been tried—corn for ethanol and soybeans for biodiesel, for example. But to truly meet the world’s fuel needs, researchers must come up with a way to produce as much biofuel as possible in the smallest amount of space using the least amount of resources.

Enter algae. Unlike other crops like corn or soybeans, algae can use various water sources ranging from wastewater to brackish water and be grown in small, intensive plots on denuded land. While algae may still produce some C02 when burned, it can sequester C02 during growth in a way that fossil-fuel based energy sources obviously can’t.

Scientists in VBI’s Data Analysis Core (DAC), Robert Settlage, Ph.D., and Hongseok Tae, Ph.D., assisted in the assembly of the genome of Nannochloropis gaditana, a marine algae that may be capable of producing the lipid yields necessary for a viable fuel source.

“Getting the data is now the easy part. What we’re doing in the DAC is enabling researchers to move beyond informatics issues of assembly and analysis to regain their focus on the biological implications of their research,” said Settlage.

Further analysis revealed that with fairly straightforward genetic modification, N. gaditana should be capable of producing biofuel on an industrial scale, which may be the wave of the future in fuel research and production.


Radakovits, R. et al. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat. Commun. 3:686 doi: 10.1038/ncomms1688 (2012).

About the Virginia Bioinformatics Institute
The Virginia Bioinformatics Institute at Virginia Tech is a premier bioinformatics, computational biology, and systems biology research facility that uses transdisciplinary approaches to science, combining information technology, biology, and medicine. These approaches are used to interpret and apply vast amounts of biological data generated from basic research to some of today’s key challenges in the biomedical, environmental, and agricultural sciences. With more than 320 highly trained multidisciplinary, international personnel, research at the institute involves collaboration in diverse disciplines such as mathematics, computer science, biology, immunology, biochemistry, systems biology, statistics, economics, synthetic biology, and medicine. The large amounts of data generated by this approach are analyzed and interpreted to create new knowledge that is disseminated to the world’s scientific, governmental, and wider communities.

Tiffany Trent

Tiffany Trent | EurekAlert!
Further information:

Further reports about: Algae Bioinformatics C02 DAC Nannochloropis Settlage energy source marine alga water source

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>