Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ever alert for inflammation

03.05.2010
Regulatory T cells can travel to and from the skin while controlling immune responses in that organ

By showing that anti-inflammatory regulatory T cells (Tregs) move to and from the skin whilst regulating an immune response, an international research team involving RIKEN researchers has provided insight into how immune cells behave during inflammation.

The team, including Michio Tomura, Shohei Hori and Osami Kanagawa from the RIKEN Research Center for Allergy and Immunology in Yokohama and Kenji Kabashima from the Kyoto University Graduate School of Medicine, used a specially engineered line of mice to track immune cells in a living animal model. The mice—developed previously by Tomura, Kanagawa and colleagues—express a protein called Kaede that usually causes their cells to glow green, but glow red once exposed to violet light. This color switching allowed the researchers to tag cells from one part of the body and track them as they moved elsewhere. “This kind of approach is only possible in our original Kaede mouse system and by collaboration among research centers within RIKEN,” says Tomura.

Tracking the tagged cells revealed that T cells traveled from the skin to a nearby lymph node in the absence of any immune stimulus, suggesting to the researchers that immune cells migrate through non-inflamed tissues as part of their surveillance function in the body.

When the researchers painted an antigen on the skin of these mice to induce an immune response, they observed an increase in the proportion of T cells in the nearby lymph node that had come from the skin. In mice with depleted immunosuppressive Tregs, they recorded an increase in skin swelling after antigen exposure. The team therefore believes that Tregs are required to reduce inflammation within the skin.

In tissue culture experiments, Tomura, Kabashima and colleagues found that the Tregs sourced from inflamed skin suppressed the proliferation of immune cells from the lymph node, better than Tregs that had not come from skin. The researchers suggest that was probably because skin Tregs expressed higher levels of anti-inflammatory molecules.

When they injected Tregs from inflamed skin of one mouse into inflamed skin of other mice, those Tregs reduced swelling better than cells from non-inflamed skin. The researchers also observed Tregs moving to newly inflamed areas of skin from other areas.

Since Tregs can travel to and from the skin while controlling immune responses in that organ, the researchers suggest that enhancing Treg migration or function could therefore be a promising therapeutic approach to dampen inflammation in various organs.

The corresponding author for this highlight is based at the Laboratory for Autoimmune Regulation, RIKEN Research Center for Allergy and Immunology

Journal information

1. Tomura, M., Honda, T., Tanizaki, H., Otsuka, A., Egawa, G., Tokura, Y. Waldmann, H., Hori, S., Cyster, J.G., Watanabe, T., Miyachi, Y., Kanagawa, O. & Kabashima, K. Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. The Journal of Clinical Investigation 120, 883–893 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6251
http://www.researchsea.com

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>