Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ever alert for inflammation

03.05.2010
Regulatory T cells can travel to and from the skin while controlling immune responses in that organ

By showing that anti-inflammatory regulatory T cells (Tregs) move to and from the skin whilst regulating an immune response, an international research team involving RIKEN researchers has provided insight into how immune cells behave during inflammation.

The team, including Michio Tomura, Shohei Hori and Osami Kanagawa from the RIKEN Research Center for Allergy and Immunology in Yokohama and Kenji Kabashima from the Kyoto University Graduate School of Medicine, used a specially engineered line of mice to track immune cells in a living animal model. The mice—developed previously by Tomura, Kanagawa and colleagues—express a protein called Kaede that usually causes their cells to glow green, but glow red once exposed to violet light. This color switching allowed the researchers to tag cells from one part of the body and track them as they moved elsewhere. “This kind of approach is only possible in our original Kaede mouse system and by collaboration among research centers within RIKEN,” says Tomura.

Tracking the tagged cells revealed that T cells traveled from the skin to a nearby lymph node in the absence of any immune stimulus, suggesting to the researchers that immune cells migrate through non-inflamed tissues as part of their surveillance function in the body.

When the researchers painted an antigen on the skin of these mice to induce an immune response, they observed an increase in the proportion of T cells in the nearby lymph node that had come from the skin. In mice with depleted immunosuppressive Tregs, they recorded an increase in skin swelling after antigen exposure. The team therefore believes that Tregs are required to reduce inflammation within the skin.

In tissue culture experiments, Tomura, Kabashima and colleagues found that the Tregs sourced from inflamed skin suppressed the proliferation of immune cells from the lymph node, better than Tregs that had not come from skin. The researchers suggest that was probably because skin Tregs expressed higher levels of anti-inflammatory molecules.

When they injected Tregs from inflamed skin of one mouse into inflamed skin of other mice, those Tregs reduced swelling better than cells from non-inflamed skin. The researchers also observed Tregs moving to newly inflamed areas of skin from other areas.

Since Tregs can travel to and from the skin while controlling immune responses in that organ, the researchers suggest that enhancing Treg migration or function could therefore be a promising therapeutic approach to dampen inflammation in various organs.

The corresponding author for this highlight is based at the Laboratory for Autoimmune Regulation, RIKEN Research Center for Allergy and Immunology

Journal information

1. Tomura, M., Honda, T., Tanizaki, H., Otsuka, A., Egawa, G., Tokura, Y. Waldmann, H., Hori, S., Cyster, J.G., Watanabe, T., Miyachi, Y., Kanagawa, O. & Kabashima, K. Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. The Journal of Clinical Investigation 120, 883–893 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6251
http://www.researchsea.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>