Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airy but Thirsty

26.02.2013
Ultralight, flexible, fire-resistant carbon nanotube aerogels from bacterial cellulose

They can absorb vast amounts of oil or organic compounds, yet they are nearly as light as air: highly porous solids made of a three-dimensional network of carbon nanotubes.

In the journal Angewandte Chemie, Chinese scientists have now introduced a simple technique for the production of these ultralight, flexible, fire-resistant aerogels. Their method begins with bacterial cellulose as an inexpensive starting material. Their fibrous lightweights can "suck" organic contaminants from polluted water and could possibly be used as pressure sensors.

Their unique properties—low density, highy porosity, high specific surface, and high electrical conductivity—make carbon aerogels promising new materials. They could be used as catalyst supports, electrodes for supercapacitors, adsorbents, and gas sensors, as well as for synthetic muscles. However, there is still no simple, industrially and environmentally friendly method for the production of these attractive lightweights.

A team led by Shu-Hong Yu at the Hefei National Laboratory for Physical Sciences at Micrscale (HFNL), Univeristy of Science and Technology of China is pursuing their production from biomass. They selected bacterial cellulose, a commonly used, inexepensive, nontoxic form of biomass consisting of a tangled network of cellulose nanofibers. This material can easily be produced on an industrial scale through microbial fermentation.

The researchers trimmed off small pieces of the tangled cellulose nanofibers. These were freeze-dried and then pyrolyzed at 1300 °C under argon. This converts the cellulose into graphitic carbon. The density decreases but the network structure remains intact. The result is a black, ultralight, mechanically stable aerogel. Because it is porous and highly hydrophobic, it can adsorb organic solvents and oils—up to 106 to 312 times its own weight.

It draws oil out of an oil/water mixture with high efficiency and selectivity, leaving behind pure water. This makes the new aerogel an ideal candidate for cleaning up oil spills or sucking up nonpolar industrial pollutants. The absorbed substances can easily be removed from the gel through distillation or combustion, allowing the gel to be used again.

The extraordinary heat- and fire-resistence of this material are particularaly noteworthy: repeated treatment with the flame of a torch caused no changes in its form or inner three-dimensional pore structure.

The high electrical conductivity of the aerogel also suggests the possibility of electronic applications. The material has high mechanical flexibility. It can be compressed to about 10 % of its original volume and will subsequently expand back to nearly its original shape. Its conductivity decreases in a nearly linear fashion with increasing compression, which could allow the aerogel to be used as a pressure sensor.

About the Author
Professor Shu-Hong Yu is a Full professor at the Hefei National Laboratory for Physical Sciences at Micrscale (HFNL), University of Science and Technology (USTC), China. He is the Head of the Division of Nanomaterials & Chemistry, and also acting as the Deputy Dean of the School of Chemistry & Materials. He is the recipient of the Roy-Somiya Medal of the International Solvothermal and Hydrothermal Association (ISHA) (2010), Chem Soc Rev Emerging Investigator Award (2010) by the Royal Society of Chemistry (UK). His main specialty includes controlled synthesis of new functional nanoparticles, and macroscopic-scale assembly of nanoscale building blocks, and their applications in energy storage, energy conversion, environment protection and other sustainable application systems.
Author: Shu-Hong Yu, University of Science and Technology of China, Hefei (P.R. China), http://staff.ustc.edu.cn/~yulab/
Title: Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201209676

Shu-Hong Yu | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>