Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airy but Thirsty

26.02.2013
Ultralight, flexible, fire-resistant carbon nanotube aerogels from bacterial cellulose

They can absorb vast amounts of oil or organic compounds, yet they are nearly as light as air: highly porous solids made of a three-dimensional network of carbon nanotubes.

In the journal Angewandte Chemie, Chinese scientists have now introduced a simple technique for the production of these ultralight, flexible, fire-resistant aerogels. Their method begins with bacterial cellulose as an inexpensive starting material. Their fibrous lightweights can "suck" organic contaminants from polluted water and could possibly be used as pressure sensors.

Their unique properties—low density, highy porosity, high specific surface, and high electrical conductivity—make carbon aerogels promising new materials. They could be used as catalyst supports, electrodes for supercapacitors, adsorbents, and gas sensors, as well as for synthetic muscles. However, there is still no simple, industrially and environmentally friendly method for the production of these attractive lightweights.

A team led by Shu-Hong Yu at the Hefei National Laboratory for Physical Sciences at Micrscale (HFNL), Univeristy of Science and Technology of China is pursuing their production from biomass. They selected bacterial cellulose, a commonly used, inexepensive, nontoxic form of biomass consisting of a tangled network of cellulose nanofibers. This material can easily be produced on an industrial scale through microbial fermentation.

The researchers trimmed off small pieces of the tangled cellulose nanofibers. These were freeze-dried and then pyrolyzed at 1300 °C under argon. This converts the cellulose into graphitic carbon. The density decreases but the network structure remains intact. The result is a black, ultralight, mechanically stable aerogel. Because it is porous and highly hydrophobic, it can adsorb organic solvents and oils—up to 106 to 312 times its own weight.

It draws oil out of an oil/water mixture with high efficiency and selectivity, leaving behind pure water. This makes the new aerogel an ideal candidate for cleaning up oil spills or sucking up nonpolar industrial pollutants. The absorbed substances can easily be removed from the gel through distillation or combustion, allowing the gel to be used again.

The extraordinary heat- and fire-resistence of this material are particularaly noteworthy: repeated treatment with the flame of a torch caused no changes in its form or inner three-dimensional pore structure.

The high electrical conductivity of the aerogel also suggests the possibility of electronic applications. The material has high mechanical flexibility. It can be compressed to about 10 % of its original volume and will subsequently expand back to nearly its original shape. Its conductivity decreases in a nearly linear fashion with increasing compression, which could allow the aerogel to be used as a pressure sensor.

About the Author
Professor Shu-Hong Yu is a Full professor at the Hefei National Laboratory for Physical Sciences at Micrscale (HFNL), University of Science and Technology (USTC), China. He is the Head of the Division of Nanomaterials & Chemistry, and also acting as the Deputy Dean of the School of Chemistry & Materials. He is the recipient of the Roy-Somiya Medal of the International Solvothermal and Hydrothermal Association (ISHA) (2010), Chem Soc Rev Emerging Investigator Award (2010) by the Royal Society of Chemistry (UK). His main specialty includes controlled synthesis of new functional nanoparticles, and macroscopic-scale assembly of nanoscale building blocks, and their applications in energy storage, energy conversion, environment protection and other sustainable application systems.
Author: Shu-Hong Yu, University of Science and Technology of China, Hefei (P.R. China), http://staff.ustc.edu.cn/~yulab/
Title: Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201209676

Shu-Hong Yu | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>