Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air-purifying church windows early nanotechnology

25.08.2008
Stained glass windows that are painted with gold purify the air when they are lit up by sunlight, a team of Queensland University of Technology experts have discovered.

Associate Professor Zhu Huai Yong, from QUT's School of Physical and Chemical Sciences said that glaziers in medieval forges were the first nanotechnologists who produced colours with gold nanoparticles of different sizes.

Professor Zhu said numerous church windows across Europe were decorated with glass coloured in gold nanoparticles.

"For centuries people appreciated only the beautiful works of art, and long life of the colours, but little did they realise that these works of art are also, in modern language, photocatalytic air purifier with nanostructured gold catalyst," Professor Zhu said.

He said tiny particles of gold, energised by the sun, were able to destroy air-borne pollutants like volatile organic chemical (VOCs), which may often come from new furniture, carpets and paint in good condition.

"These VOCs create that 'new' smell as they are slowly released from walls and furniture, but they, along with methanol and carbon monoxide, are not good for your health, even in small amounts," he said.

"Gold, when in very small particles, becomes very active under sunlight.

"The electromagnetic field of the sunlight can couple with the oscillations of the electrons in the gold particles and creates a resonance.

"The magnetic field on the surface of the gold nanoparticles can be enhanced by up to hundred times, which breaks apart the pollutant molecules in the air."

Professor Zhu said the by-product was carbon dioxide, which was comparatively safe, particularly in the small amounts that would be created through this process.

He said the use of gold nanoparticles to drive chemical reactions opened up exciting possibilities for scientific research.

"This technology is solar-powered, and is very energy efficient, because only the particles of gold heat up," he said.

"In conventional chemical reactions, you heat up everything, which is a waste of energy.

"Once this technology can be applied to produce specialty chemicals at ambient temperature, it heralds significant changes in the economy and environmental impact of the chemical production."

Rachael Wilson | EurekAlert!
Further information:
http://www.qut.edu.au

Further reports about: Air-purifying Zhu carbon monoxide gold nanoparticle nanoparticles

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>