Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nothing but Air

27.01.2012
Light but stable: novel cellulose–silica gel composite aerogels

Delicate and translucent as a puff of air, yet mechanically stable, flexible, and possessing amazing heat-insulation properties—these are the properties of a new aerogel made of cellulose and silica gel. Researchers led by Jie Cai have introduced this novel material, which consists almost completely of air, in the journal Angewandte Chemie.


Gels are familiar to us in forms like Jell-O or hair gel. A gel is a loose molecular network that holds liquids within its cavities. Unlike a sponge, it is not possible to squeeze the liquid out of a gel. An aerogel is a gel that holds air instead of a liquid. For example, aerogels made from silicon dioxide may consist of 99.98 % air-filled pores. This type of material is nearly as light as air and is translucent like solidified smoke.

In addition, it is not flammable and is a very good insulator—even at high temperatures. One prominent application for aerogels was the insulation used on space shuttles. Because of their extremely high inner surface area, aerogels are also potential supports for catalysts or pharmaceuticals. Silica-based aerogels are also nontoxic and environmentally friendly.

One drawback, however, has limited the broader application of these airy materials: silica-based aerogels are very fragile, and thus require some reinforcement. In addition to reinforcement with synthetic polymers, biocompatible materials like cellulose are also under consideration.

The researchers at Wuhan University (China) and the University of Tokyo (Japan) have now developed a special composite aerogel from cellulose and silicon dioxide. They begin by producing a cellulose gel from an alkaline urea solution. This causes the cellulose to dissolve, and to regenerate to form a nanofibrillar gel. The cellulose gel then acts as a scaffold for the silica gel prepared by a standard sol–gel process, in which a dissolved organosilicate precursor is cross-linked, gelled, and deposited onto the cellulose nanofibers. The resulting liquid-containing composite gel is then dried with supercritical carbon dioxide to make an aerogel.

The novel composite aerogel demonstrates an interesting combination of advantageous properties: mechanical stability, flexibility, very low thermal conductivity, semitransparency, and biocompatibility. If required, the cellulose part can be removed through combustion, leaving behind a silicon dioxide aerogel. The researchers are optimistic: "Our new method could be a starting point for the synthesis of many new porous materials with superior properties, because it is simple and the properties of the resulting aerogels can be varied widely."

About the Author
Dr Jie Cai is an Associate Professor in the College of Chemistry and Molecular Sciences of Wuhan University. His research interests are in biomacromolecules with particular emphasis on cellulose and chitin materials and composites.
Author: Jie Cai, Wuhan University (China), http://www.polyphys.whu.edu.cn/zhanglab-E/sub-staff.htm
Title: Cellulose–Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201105730

Jie Cai | Angewandte Chemie
Further information:
http://www.polyphys.whu.edu.cn/zhanglab-E/sub-staff.htm
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>