Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The aging stem cell

05.07.2010
The discovery that secreted protein Ecrg4 slows neural precursor cell division during aging could point the way to treatments for age-related diseases

Stem cells and precursor cells can proliferate to repopulate damaged tissues. During aging, however, these cells lose their ability to divide—a process that is called senescence.

Now, a team of researchers led by Toru Kondo at the RIKEN Center for Developmental Biology, Kobe, has identified esophageal cancer-related gene 4 (Ecrg4) as being responsible for senescence of precursor cells in the central nervous system during aging1. This finding could explain why neurodegenerative diseases, such as Alzheimer's disease, are prevalent in elderly individuals.

Addition of serum to oligodendrocyte precursor cells (OPCs) in culture drives them toward a senescent phenotype, making them an ideal model system to study genes that induce senescence. Kondo and colleagues looked at changes in gene expression during induction of senescence in mouse OPCs and found that the expression of Ecrg4 increased the most in senescent OPCs.

When the researchers overexpressed Ecrg4 in rat OPCs, this arrested the cell cycle, and increased the proportion of cells that were labeled by a marker of cell senescence. The protein Ecrg4 seemed to act by inducing the degradation of proteins called cyclins, which drive cell cycle progression. When they reduced Ecrg4 expression, it blocked the induction of OPC senescence that is normally induced by serum.

In the culture medium of OPCs that were already senescent, Kondo and colleagues found that Ecrg4 protein was present. Administering recombinant Ecrg4 protein onto OPCs in culture also induced senescence, suggesting that Ecrg4 is a secreted protein that drives OPC senescence.

They also observed that Ecrg4 was highly expressed in the brains of old—but not young—mice, in brain regions rich with neural precursor cells and OPCs. Further, they found that the cells expressing Ecrg4 in the aging brain were not proliferating. In fact, Ecrg4-expressing cells in the aging brain seemed to be senescent, since they were co-labeled with a senescence marker. “An important next step in this research,” says Kondo, “is to make Ecrg4 knockout mice to examine the functions of Ecrg4 in vivo.”

Identifying factors that drive neural precursor cell senescence may one day lead to therapies that can kick-start their proliferation that has stalled during aging, which could help restore neuronal loss in diseases such as stroke or Parkinson's disease. “Our findings provide a new clue to investigate the mechanism of brain aging,” explains Kondo, “and may lead to the development of new methods to prevent aging and age-related diseases.”

The corresponding author for this highlight is based at the Laboratory for Cell Lineage Modulation, RIKEN Center for Developmental Biology

Journal information

Kujuro, Y., Suzuki, N. & Kondo, T. Esophageal cancer-related gene 4 is a secreted inducer of cell senescence expressed by aged CNS precursor cells. Proceedings of the National Academy of Science USA 107, 8259–8264 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6324
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>