Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aging and longevity tied to specific brain region in mice

29.07.2010
Researchers watched two groups of mice, both nearing the end of a two-day fast. One group was quietly huddled together, but the other group was active and alert. The difference? The second set of mice had been engineered so their brains produced more SIRT1, a protein known to play a role in aging and longevity.

“This result surprised us,” says the study’s senior author Shin-ichiro Imai, MD, PhD, an expert in aging research at Washington University School of Medicine in St. Louis. “It demonstrates that SIRT1 in the brain is tied into a mechanism that allows animals to survive when food is scarce. And this might be involved with the lifespan-increasing effect of low-calorie diets.”

Imai explains that the mice with increased brain SIRT1 have internal mechanisms that make them use energy more efficiently, which helps them move around in search of food even after a long fast. This increased energy-efficiency could help delay aging and extend lifespan.

The research findings are published in the July 28 issue of the Journal of Neuroscience.

Imai’s past research demonstrated that SIRT1 is at the center of a network that connects metabolism and aging. A form of the gene is found in every organism on earth. The gene coordinates metabolic reactions throughout the body and manages the body’s response to nutrition. SIRT1 is activated under low-calorie conditions, which have been shown to extend the life spans of laboratory animals.

The researchers found that the key to the mice’s extra activity lies in a small region of the brain called the hypothalamus, which controls basic life functions such as hunger, body temperature, stress response and sleep-wake cycles.

At the start of the research project, the study’s lead author Akiko Satoh, PhD, a postdoctoral research associate in developmental biology, saw that mice on low-calorie diets had increased amounts of SIRT1 in specific regions of the hypothalamus and that neurons in the same regions were activated.

So the research team developed mice that continually produced higher amounts of SIRT1 in their brains to see what the effect would be. That’s when Satoh observed the mice’s unusual level of activity under fasting conditions.

“This is the first time that it has been demonstrated that SIRT1 is a central mediator for behavior adaptation to low-calorie conditions,” Satoh says.

Interestingly, these mice, called BRASTO (brain-specific SIRT1-overexpressing) mice, also maintained higher body temperatures after a 48-hour fast than ordinary mice, which experience a drop in body temperature during fasting.

“The BRASTO mice have a better capability to come up with energy to achieve a higher body temperature and increased activity level when food is restricted,” says Imai, associate professor of developmental biology and of medicine.

The team also examined mice that had no ability to produce SIRT1 in their brains. During diet-restricting conditions, these mice did not increase their activity, and their body temperature dropped more than normal, giving further evidence that SIRT1 was essential for high-activity, high-temperature responses.

As the researchers looked further into the role of SIRT1 in the hypothalamus, they found that during diet restriction, SIRT1 enhanced the production of a specific neural receptor in the hypothalamus involved in regulating metabolic rate, food intake and insulin sensitivity. Furthermore, mice with increased brain SIRT1 had a higher neural response to the gut hormone, ghrelin, which is known to stimulate the hypothalamus during low-calorie conditions. Both findings add weight to a significant role for SIRT1 in the hypothalamic response to a restricted diet.

The scientists are continuing to study the BRASTO mice to see if they live longer than ordinary mice.

Their work suggests that the brain, and particularly the hypothalamus, might play a dominant role in governing the pace of aging. They believe their studies could eventually provide clues for increasing productive aging in people.

“If we can enhance the function of the human hypothalamus by manipulating SIRT1, we could potentially overcome some health problems associated with aging,” Imai says. “One example is anorexia of aging in which elderly people lose the drive to eat. It is possible that enhancing SIRT1 could alleviate behavioral problems like this.”

Satoh A, Brace CS, Ben-Josef G, West T, Wozniak DF, Holtzman DM, Herzog ED, Imai S. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. Journal of Neuroscience. July 28, 2010.

Funding from the National Institute on Aging, the Ellison Medical Foundation, the Longer Life Foundation and the Japan Society for the Promotion of Science supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Judy Martin Finch | EurekAlert!
Further information:
http://www.wust.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>