Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aging as a way of survival

14.04.2009
New discovery by CECAD Cologne: Persistent DNA damage induces longevity assurance program

A German-Dutch research team led by a scientist of the Excellence Cluster on aging and aging associated diseases of the University of Cologne (CECAD Cologne), Björn Schumacher reports in this week online publication of "Nature Cell Biology" that damage in the genetic material induces a longevity assurance program.

These findings have led to a new concept of aging as a way to survive: genetic programs that antagonize cancer formation keep the body alive despite accumulating damage in aging.

The genetic material (DNA) in every cell of the body is constantly under attack from extrinsic sources, such as for instance ultraviolet irradiation from the sun, or intrinsic sources, such as metabolic by-products. To fend off those damages cells have developed sophisticated DNA repair mechanisms. Incorrect repair, however, can lead to mutations and consequently to cancer.

But when damages are left unrepaired, they contribute to aging. The causal effect of DNA damage in aging is particularly apparent when damages accumulate already early in life as a result of congenital repair defects. These patients develop signs of premature aging already very early in life. Studying those diseases Dr. Schumacher's group has investigated why certain DNA repair defects lead to premature aging while other give rise to cancer development.

During the past two decades of aging research it has become apparent that aging is not only a result of accumulating damages that compromise the functioning of the body but also that there are genetic programs that regulate aging. Those programs regulate body growth but were also found to have a profound effect on longevity. Dr. Schumacher's team now found that specifically damage that persisted in expressed and thereby active genes induced the longevity assurance program. In cells of premature aging patients this program was already activated upon extremely low doses of damage. However, damages that persisted outside of active genes failed to induce longevity assurance mechanisms.

Interestingly, these observations precisely reflect the syndromes that are associated with defects in specific DNA repair systems. Patient who cannot repair damage in active genes age prematurely, whereas patients that cannot fix damages outside of active genes develop cancer but do not age prematurely. The scientists concluded that this program suppresses cancer development and thus keeps the body alive amid accumulating damage during aging. Dr. Schumacher's research group at the excellence cluster CECAD Cologne now aims at understanding how this "survival program" is activated to then develop novel therapeutic strategies that are aimed at preventing age-related diseases including cancer.

For further information, please contact:
Inge de Vries
PR-Manager, CECAD Cologne
Tel: 0221 - 470 4962
Email: idvries@uni-koeln.de

Merle Hettesheimer | idw
Further information:
http://www.uni-koeln.de

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>