Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aggressive piranhas bark to say buzz off

13.10.2011
Thanks to Hollywood, piranhas have a bad reputation and it would be a brave scientist that chose to plunge their hand into a tank of them.

But that didn't deter Sandie Millot, Pierre Vandewalle and Eric Parmentier from the University of Liège, Belgium. 'You just have to pick them up and they make sounds,' says Parmentier. However, it wasn't clear when and why piranhas produce sounds naturally.

Intrigued by fish acoustic communication and the mechanisms that they use to generate sound, the team monitored the behaviour of small groups of captive red-bellied piranhas and publish their discovery that the fearsome fish have a repertoire of three combative sounds in The Journal of Experimental Biology at http://jeb.biologists.org.

Suspending a hydrophone in the piranhas' tank, Millot and Parmentier recorded the fish's sounds and filmed them as they cruised around and competed for food. According to Parmentier, the well-fed fish were relatively peaceful – attacking each other occasionally – although they were not averse to nipping at near-by fingers. 'We both visited the hospital because we were bitten and Sandie's finger was nearly cut in half,' recalls Parmentier.

Comparing the soundtrack with the movie, the team found that the fish were generally silent. However, they became quite vocal as soon as they entered into a confrontation – producing the same barking sound that they had produced when held in the scientists' hands. 'At first we thought there was only one sound,' admits Parmentier, but then it became apparent that the piranhas produce two more: a short percussive drum-like sound when fighting for food and circling an opponent; and a softer 'croaking' sound produced by their jaws when they snap at each other.

Having convinced themselves that the fish had a wider acoustic repertoire than they had initially thought, the team decided to find out how the fish produce the sounds.

Parmentier explains that piranhas were already known to produce noises using muscles attached to their swim bladders; however, it wasn't clear how the swim bladder was involved in sound production. So, the team stimulated the muscles to contract, measured the swim bladder's vibration and found that instead of resonating – and continuing to vibrate after the muscles ceased contracting – the swim bladder stopped vibrating as soon as the muscles finished contracting. In other words, the muscles were driving the swim bladder's vibration directly and the frequency (pitch) of the bark and drum sounds was determined by the muscles' contraction frequencies: not the swim bladder's own intrinsic resonant properties. They also found that the rear half of the swim bladder did not vibrate, so only the head portion of the swim bladder contributed to sound production.

Now that they have discovered that aggressive piranhas are quite vocal, the team is keen to find out whether amorous piranhas are vocal too. However, Parmentier suspects that the team will have to relocate to Brazil to answer that question. 'It is difficult for the fish to reproduce in the tank, so I am sure we have to deploy hydrophones in the field to have the sounds that are produced during mating,' says Parmentier.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Millot, S., Vandewalle, P. and Parmentier, E. (2011). Sound production in red-bellied piranhas (Pygocentrus nattereri, Kner): an acoustical, behavioural and morphofunctional study. J. Exp. Biol. 214, 3613-3618.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>