Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aggressive male mating behavior can endanger species

16.05.2011
Aggressive male mating behavior might well be a successful reproductive strategy for the individual but it can drive the species to extinction, an international research team headed by evolutionary biologist Daniel Rankin from the University of Zurich has demonstrated in a mathematical model.

Evolutionary biologists have long debated whether the behavior of the individual is able to influence processes on a population or species level. The possibility of selection at species level is still controversial.

Using a mathematical model, an international team of researchers led by Daniel Rankin, an evolutionary biologist at the University of Zurich, has now demonstrated that aggressive male sexual behavior not only harms the female, but can also cause entire populations to die out. The paper recently published in the journal The American Naturalist was made possible by funding from the Swiss National Science Foundation (SNSF).

For their study, the scientists concentrated on the extreme sexual conflict of seed beetles, which are considered as pests in agriculture. Male seed beetles have barbed penises which make it impossible for the female to shake off an unwelcome mate. The aggressive males have a higher reproductive rate as they are more successful than less aggressive males; however, they harm the female during the mating process. The researchers have now shown that the greater mating success of aggressive males can result in the males of a species becoming more aggressive in general.

The aggression spiral has dramatic consequences for the population and species: More females are harmed during mating and die from their injuries. This means the females become scarcer as a resource for the males and the species eventually dies out. Individual interests and the interests of the population contrast greatly in the present case.

In economics, such clashes of individual and group interests are referred to as the “tragedy of the commons”. The principle refers to the overexploitation of collective resources and serves, among other things, to describe human dilemmas related to environmental pollution and global warming. In nature, the tragedy of the commons is limited as aggressive behavior is costly for the individual. This also explains why such severe sexual conflicts as in the case of the seed beetle cannot be observed everywhere. Species with too high an injury rate during reproduction have driven themselves to ex-tinction in the course of evolution. In the case studied, the female’s tactical response is to steer clear of aggressive males.

“In nature, there are many examples of tragedies of the commons,” says Daniel Rankin. What he means is that understanding how nature solves the tragedy of the commons could also inspire solu-tions to human problems.

Further reading:
Daniel J. Rankin, Ulf Dieckmann and Hanna Kokko: Sexual conflict and the tragedy of the commons. In: The American Naturalist. Vol 177, June 2011. http://www.zora.uzh.ch/42049/
Contact:
Dr. Daniel J. Rankin
University of Zurich
Institute of Evolutionary Biology and Environmental Studies
Tel.: + 41 44 635 61 48
Cell: +41 78 648 99 05
Email: daniel.rankin@ieu.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>