Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New agents to combat the plague

11.01.2012
The plague is believed to have been eradicated in Europe. But it continues to reappear in other parts of the world, such as Madagascar, the Congo, and Peru. Since the pathogens are becoming resistant to the usual antibiotics, new agents are urgently needed. Progress has now been made in this area.

A wonderful breakthrough for scientists from the universities of Würzburg and Stony Brook (USA): they have shed light on the binding and action mechanisms of two new inhibitors that attack the plague pathogen, the bacterium Yersinia pestis. In the current issue of the journal “Structure” they present both substances, which belong to the pyridone group.


A newly developed inhibitor (magenta) from the pyridone group binds to a vital enzyme of the plague pathogen. The cofactor of the enzyme, NADH, which contributes significantly to the effect of the inhibitor, is shown in blue.
Image: Maria Hirschbeck

The new inhibitors attach themselves to the bacterial enzyme FabV and impede it in its work. This enzyme performs the final step in the production of bacterial fatty acids. If it is blocked, the plague pathogen dies. This is because without fatty acids it cannot maintain its protective shell, the cell membrane.

“But the two substances do not inhibit the enzyme well enough yet,” says Professor Caroline Kisker of the Rudolf Virchow Center at the University of Würzburg. For that reason, these new inhibitors and their interactions with the enzyme now need to be analyzed further and improved.

Steps to improve the inhibitors

Structural biologist Kisker, her doctoral student Maria Hirschbeck, and postdoctoral fellow Jochen Kuper are collaborating on this with Würzburg chemists and pharmacists Professor Christoph Sotriffer and Steffen Wagner as well as with Peter Tonge of Stony Brook University. In their laboratories, these scientists are working not with pathogens of the plague, but with the isolated enzyme. They are crystallizing it as a compound with the inhibitors, rendering it into a state in which they can analyze how the inhibitors attach themselves to the enzyme right down to the molecular level.

Christoph Sotriffer, an expert in computer modeling of molecules, and his staff then examine the crystal structures and propose changes to the inhibitors that might make these even more effective. Finally, the modified inhibitors are synthesized and re-tested: test-tube experiments reveal whether they really are further weakening this enzyme that is so vital to the plague pathogen.

“This cycle will generally have to be repeated several times until, ideally, we end up with a highly active inhibitor,” says Caroline Kisker. However, whether the inhibitor will then also be suitable as medication is far from certain. Numerous other tests will be needed to determine that.

This research is contained within the Würzburg Collaborative Research Center 630 (Recognition, Preparation, and Functional Analysis of Agents against Infectious Diseases). The German Research Foundation (DFG) is funding the work.

Progression of an infection with the plague pathogen

The pathogens of the plague tend to live in rodents, particularly rats. They can be transferred to humans through bites from infected rat fleas. After one to seven days, the sufferer develops a high fever and shivering, among other things. These symptoms are joined by painful buboes, swellings of the lymph nodes that appear like lumps on the skin. In rare cases, the lumps rupture outwards, according to the Robert Koch Institute.

As the disease progresses, the pathogens may also attack internal organs, especially the lungs. It is then common for the sufferer to cough up blood. At this stage, the pathogens can also be transmitted from human to human in droplets of coughed-up fluid. Without treatment with antibiotics, this pneumonic plague, as it is known, almost always ends in death. With bubonic plague, on the other hand, there is a 50 percent chance of survival even without treatment. Generally speaking, if the plague is detected early, it can be treated successfully with antibiotics – provided that these are still effective.

Resistant plague pathogens discovered

In 2010, scientists from the Pasteur Institute in Paris found two plague pathogen strains that no longer respond to antibiotics. Both came from Madagascar. This island south-east of Africa is a hotspot for global outbreaks of the plague: in 2010, there were 313 recognized cases of the disease here, according to statistics from the World Health Organization (WHO). The second-highest incidence of infection was found in the Congo (152), followed by Peru with 27 cases.

“Structure of the Yersinia pestis FabV Enoyl-ACP Reductase and its Interaction with two 2-Pyridone Inhibitors”, Maria W. Hirschbeck, Jochen Kuper, Hao Lu, Nina Liu, Carla Neckles, Sonam Shah, Steffen Wagner, Christoph A. Sotriffer, Peter J. Tonge, and Caroline Kisker. Structure, Vol. 20, Issue 1, 89-100, 11 January 2012, DOI 10.1016/j.str.2011.07.019

Contact

Prof. Dr. Caroline Kisker, Institute of Structural Biology, Rudolf Virchow Center / DFG Research Center for Experimental Biomedicine, T +49 (0)931 31-80381, caroline.kisker@virchow.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität W
Further information:
http://www.virchow.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>