Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Agent against Tropical Parasites

12.07.2012
There is an urgent need for better drugs to treat African sleeping sickness. Würzburg scientists have developed a very promising new agent, which is now to be further optimized.

African sleeping sickness is caused by the tropical parasite Trypanosoma brucei. This unicellular, worm-shaped organism is endemic in Sub-Saharan Africa. It can be transmitted to humans through the bite of the tsetse fly. Infected people first get headaches and aching limbs, after which confusion, spasms and other symptoms follow at a later stage. Finally, the patients go into some kind of vegetative state and die. About 30,000 new infections occur each year.


Chemical structure of the agent quinolone amide, which kills off the pathogens responsible for the African sleeping sickness. Picture: Georg Hiltensperger / Nicola Jones

There are still no vaccines available against the pathogen and the drugs on offer have in part extreme side effects. Therefore, better drugs are urgently needed for the treatment of this disease. This is what pharmacologists, medical researchers and biologists of the University of Würzburg are currently working on. Successfully too: The scientists present a new potent agent against trypanosoma in the "Journal of Medicinal Chemistry".

Quinolone amide disrupts the cell division of the parasites

The new agent is a molecule classified into the group of quinolone amides. It has been developed by Würzburg pharmacologists; in cell cultures, the agent reliably kills off the pathogens responsible for the sleeping sickness – even when administered in small doses.

How does the quinolone amide attack the parasites? Analyses conducted at the Biocenter have shown that the agent interacts with the so-called kinetoplasts. These structures are only found in trypanosomes. "Without the kinetoplasts, the cell division and consequently the reproduction of the pathogens halts," says Nicola Jones at the Biocenter.

Objective: To make the agent soluble in water

Next, it must be clarified in an animal model whether the new agent works effectively in an infected organism as well. However, there is still a hurdle to be cleared before doing this. Quinolone amide is poorly soluble in water. "Therefore, processing it into a drug is very difficult; furthermore, the agent is not absorbed into the blood effectively enough," explains Georg Hiltensperger at the Department of Pharmaceutical Chemistry.

So the bioavailability of the agent still needs to be improved. In order to achieve this, the researchers pursue two strategies. Firstly, they are testing whether the quinolone amide can be made better soluble in water without loss of effectiveness by means of chemical modifications. Secondly, they are trying to encapsulate the agent with pharmaceutical technologies so effectively that it is delivered to the blood in sufficient quantities after oral administration.

Groups involved in the research

The scientists at the University of Würzburg involved in this research include the study groups of professors Ulrike Holzgrabe and Lorenz Meinel (Pharmacy), Markus Engstler (Biology) and Holger Braunschweig (Chemistry). The tropical medicine expert August Stich of the Medical Mission Institute Würzburg and the Basel researcher Marcel Kaiser are also contributing to this research.
The results were achieved at the Collaborative Research Center (SFB) 630 (Recognition, Preparation and Functional Analysis of Agents against Infectious Diseases) of the University of Würzburg. The SFB is funded by the German Research Foundation.

"Synthesis and Structure-Activity Relationships of New Quinolone-Type Molecules against Trypanosoma brucei", Georg Hiltensperger, Nicola G. Jones, Sabine Niedermeier, August Stich, Marcel Kaiser, Jamin Jung, Sebastian Puhl, Alexander Damme, Holger Braunschweig, Lorenz Meinel, Markus Engstler, and Ulrike Holzgrabe. Journal of Medicinal Chemistry, 1 March 2012, 55 (6), pp 2538–2548, DOI: 10.1021/jm101439s

Contact persons

Prof. Dr. Ulrike Holzgrabe, Department of Pharmaceutical Chemistry at the University of Würzburg, T +49 (0)931 31-85461, holzgrab@pharmazie.uni-wuerzburg.de

Prof. Dr. Markus Engstler, Department of Zoology I (Cell and Developmental Biology), Biocenter at the University of Würzburg, T +49 (0)931 31-80060, markus.engstler@biozentrum.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>