Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Agent against Tropical Parasites

12.07.2012
There is an urgent need for better drugs to treat African sleeping sickness. Würzburg scientists have developed a very promising new agent, which is now to be further optimized.

African sleeping sickness is caused by the tropical parasite Trypanosoma brucei. This unicellular, worm-shaped organism is endemic in Sub-Saharan Africa. It can be transmitted to humans through the bite of the tsetse fly. Infected people first get headaches and aching limbs, after which confusion, spasms and other symptoms follow at a later stage. Finally, the patients go into some kind of vegetative state and die. About 30,000 new infections occur each year.


Chemical structure of the agent quinolone amide, which kills off the pathogens responsible for the African sleeping sickness. Picture: Georg Hiltensperger / Nicola Jones

There are still no vaccines available against the pathogen and the drugs on offer have in part extreme side effects. Therefore, better drugs are urgently needed for the treatment of this disease. This is what pharmacologists, medical researchers and biologists of the University of Würzburg are currently working on. Successfully too: The scientists present a new potent agent against trypanosoma in the "Journal of Medicinal Chemistry".

Quinolone amide disrupts the cell division of the parasites

The new agent is a molecule classified into the group of quinolone amides. It has been developed by Würzburg pharmacologists; in cell cultures, the agent reliably kills off the pathogens responsible for the sleeping sickness – even when administered in small doses.

How does the quinolone amide attack the parasites? Analyses conducted at the Biocenter have shown that the agent interacts with the so-called kinetoplasts. These structures are only found in trypanosomes. "Without the kinetoplasts, the cell division and consequently the reproduction of the pathogens halts," says Nicola Jones at the Biocenter.

Objective: To make the agent soluble in water

Next, it must be clarified in an animal model whether the new agent works effectively in an infected organism as well. However, there is still a hurdle to be cleared before doing this. Quinolone amide is poorly soluble in water. "Therefore, processing it into a drug is very difficult; furthermore, the agent is not absorbed into the blood effectively enough," explains Georg Hiltensperger at the Department of Pharmaceutical Chemistry.

So the bioavailability of the agent still needs to be improved. In order to achieve this, the researchers pursue two strategies. Firstly, they are testing whether the quinolone amide can be made better soluble in water without loss of effectiveness by means of chemical modifications. Secondly, they are trying to encapsulate the agent with pharmaceutical technologies so effectively that it is delivered to the blood in sufficient quantities after oral administration.

Groups involved in the research

The scientists at the University of Würzburg involved in this research include the study groups of professors Ulrike Holzgrabe and Lorenz Meinel (Pharmacy), Markus Engstler (Biology) and Holger Braunschweig (Chemistry). The tropical medicine expert August Stich of the Medical Mission Institute Würzburg and the Basel researcher Marcel Kaiser are also contributing to this research.
The results were achieved at the Collaborative Research Center (SFB) 630 (Recognition, Preparation and Functional Analysis of Agents against Infectious Diseases) of the University of Würzburg. The SFB is funded by the German Research Foundation.

"Synthesis and Structure-Activity Relationships of New Quinolone-Type Molecules against Trypanosoma brucei", Georg Hiltensperger, Nicola G. Jones, Sabine Niedermeier, August Stich, Marcel Kaiser, Jamin Jung, Sebastian Puhl, Alexander Damme, Holger Braunschweig, Lorenz Meinel, Markus Engstler, and Ulrike Holzgrabe. Journal of Medicinal Chemistry, 1 March 2012, 55 (6), pp 2538–2548, DOI: 10.1021/jm101439s

Contact persons

Prof. Dr. Ulrike Holzgrabe, Department of Pharmaceutical Chemistry at the University of Würzburg, T +49 (0)931 31-85461, holzgrab@pharmazie.uni-wuerzburg.de

Prof. Dr. Markus Engstler, Department of Zoology I (Cell and Developmental Biology), Biocenter at the University of Würzburg, T +49 (0)931 31-80060, markus.engstler@biozentrum.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>