Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Agent Chokes Off Energy Supply, Kills Cancer Cells

08.04.2010
Cancer cells grow so fast that they can outstrip their blood supply, leaving them short of oxygen. The cells then produce energy in a way that needs less oxygen but more sugar.

Researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute have designed an experimental drug that chokes off that sugar supply, causing the cells to self destruct.

The agent, called OSU-CG12, is an example of a new class of anticancer drugs called energy-restriction mimetic agents. It is described in a paper published recently in the Journal of Biological Chemistry.

“Energy restriction may offer a powerful new strategy for treating cancer because it targets a survival mechanism used by many types of cancer,” says principal investigator Ching-Shih Chen, professor of medicinal chemistry, of internal medicine and of urology.

“Our study proves that this new agent kills cancer cells through energy restriction. This is important because it shows that it is possible to design drugs that target energy restriction, and it is exciting because energy-restricting mimetic agents may also be useful for other diseases, including metabolic syndromes, diabetes, cardiovascular disease and obesity,” Chen adds.

Energy-restricting mimetic agents cause changes in cancer cells that are similar to those that occur in cancer cells deprived of their main energy source, the sugar glucose.

To design the new agent, Chen and his collaborators started with a drug called ciglitazone, which had been developed to treat type II diabetes but also showed anticancer activity in laboratory experiments.

That original drug produced its anti-diabetic effects by activating a protein called PPAR-gamma and a number of genes. The same mechanism was thought responsible for the drug’s anticancer effects. Chen and his colleagues showed, however, that the anticancer effects were due to a different mechanism, one involving energy restriction.

To enhance that activity, they altered the structure of the ciglitazone molecule, producing OSU-CG12. Using prostate cancer and breast cancer cell lines, they showed that the new Ohio State agent was 10 times better at killing cancer cells than ciglitazone and a second agent, the drug resveratrol, a natural product found in grapes and red wine that has weak anticancer activity and also works through energy restriction.

Furthermore, they showed that the new agent both stops glucose from entering cancer cells and suppresses the cells’ ability to metabolize the sugar.

Starved for fuel, the cancer cells begin consuming themselves, a process called autophagy – self eating – accompanied by other biochemical events that lead to the cells’ death by a natural process called apoptosis.

Chen and his colleagues continue modifying OSU-CG12 to enhance its efficacy. They also hope to test the agent in other conditions such as cardiovascular disease and Alzheimer’s disease.

Funding from the National Cancer Institute and the U.S. Department of Defense Prostate Cancer Research Program supported this research.

Chen is the Lucius A. Wing Chair of Cancer Research & Therapy, and a recipient of a 2010 Ohio State University Distinguished Scholar Award.

Other Ohio State researchers involved in this study were Shuo Wei and Samuel K. Kulp.

The Ohio State University Comprehensive Cancer Center- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (http://cancer.osu.edu) is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top 20 cancer hospitals in the nation, The James is the 180-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC-James is one of only seven funded programs in the country approved by the NCI to conduct both Phase I and Phase II clinical trials.

Darrell E. Ward
Medical Center Communications
614-293-3737
Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>